AlexandreL2024 commited on
Commit
e335418
·
verified ·
1 Parent(s): 650b9e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -24
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Submission Template
3
  emoji: 🔥
4
  colorFrom: yellow
5
  colorTo: green
@@ -8,45 +8,37 @@ pinned: false
8
  ---
9
 
10
 
11
- # Random Baseline Model for Climate Disinformation Classification
12
 
13
  ## Model Description
14
 
15
- This is a random baseline model for the Frugal AI Challenge 2024, specifically for the text classification task of identifying climate disinformation. The model serves as a performance floor, randomly assigning labels to text inputs without any learning.
16
 
17
  ### Intended Use
18
 
19
- - **Primary intended uses**: Baseline comparison for climate disinformation classification models
20
  - **Primary intended users**: Researchers and developers participating in the Frugal AI Challenge
21
  - **Out-of-scope use cases**: Not intended for production use or real-world classification tasks
22
 
23
  ## Training Data
24
 
25
- The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
26
- - Size: ~6000 examples
 
 
27
  - Split: 80% train, 20% test
28
- - 8 categories of climate disinformation claims
29
-
30
- ### Labels
31
- 0. No relevant claim detected
32
- 1. Global warming is not happening
33
- 2. Not caused by humans
34
- 3. Not bad or beneficial
35
- 4. Solutions harmful/unnecessary
36
- 5. Science is unreliable
37
- 6. Proponents are biased
38
- 7. Fossil fuels are needed
39
 
40
  ## Performance
41
 
42
  ### Metrics
43
- - **Accuracy**: ~12.5% (random chance with 8 classes)
44
  - **Environmental Impact**:
45
  - Emissions tracked in gCO2eq
46
  - Energy consumption tracked in Wh
47
 
48
  ### Model Architecture
49
- The model implements a random choice between the 8 possible labels, serving as the simplest possible baseline.
50
 
51
  ## Environmental Impact
52
 
@@ -57,11 +49,8 @@ Environmental impact is tracked using CodeCarbon, measuring:
57
  This tracking helps establish a baseline for the environmental impact of model deployment and inference.
58
 
59
  ## Limitations
60
- - Makes completely random predictions
61
- - No learning or pattern recognition
62
- - No consideration of input text
63
- - Serves only as a baseline reference
64
- - Not suitable for any real-world applications
65
 
66
  ## Ethical Considerations
67
 
 
1
  ---
2
+ title: Image Classification with CNN
3
  emoji: 🔥
4
  colorFrom: yellow
5
  colorTo: green
 
8
  ---
9
 
10
 
11
+ # Convolutionnal Neural Network Model for Image CLassification Classification
12
 
13
  ## Model Description
14
 
15
+ This is aCNN model for the Frugal AI Challenge 2024, specifically for the image classification task of identifying smoke in images. The model contains 2 convolutionnal layers and one fully connected layer.
16
 
17
  ### Intended Use
18
 
19
+ - **Primary intended uses**: Test for image classification models
20
  - **Primary intended users**: Researchers and developers participating in the Frugal AI Challenge
21
  - **Out-of-scope use cases**: Not intended for production use or real-world classification tasks
22
 
23
  ## Training Data
24
 
25
+ The model uses the pyronear/pyro-sdis datase.
26
+ The Pyro-SDIS Subset contains 33,636 images, including:
27
+ - 28,103 images with smoke
28
+ - 31,975 smoke instances
29
  - Split: 80% train, 20% test
30
+
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Performance
33
 
34
  ### Metrics
35
+ - **Accuracy**: ~83%
36
  - **Environmental Impact**:
37
  - Emissions tracked in gCO2eq
38
  - Energy consumption tracked in Wh
39
 
40
  ### Model Architecture
41
+ The model implements a CNN model trained on augmented images (randomCrop, Horizontal and Vertical Flip, ColorJitters...). Only 2 convolutionnal layers and one fully connected layer was implemented in this model.
42
 
43
  ## Environmental Impact
44
 
 
49
  This tracking helps establish a baseline for the environmental impact of model deployment and inference.
50
 
51
  ## Limitations
52
+ - No object detection
53
+ -
 
 
 
54
 
55
  ## Ethical Considerations
56