File size: 3,873 Bytes
7985f98
0b8cb49
 
304180d
0b8cb49
304180d
0b8cb49
5cb0b21
 
054e76a
304180d
9cc0a3d
304180d
36935e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304180d
 
 
5cb0b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7985f98
01426a4
0b8cb49
054e76a
0b8cb49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b92c5c
 
0b8cb49
 
64fec4b
0b8cb49
 
 
 
 
 
 
 
 
a642e14
0b8cb49
 
 
5cb0b21
0b8cb49
 
 
 
 
 
 
 
 
7985f98
0b8cb49
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from gradio_webrtc import WebRTC, AdditionalOutputs, ReplyOnPause
from pydub import AudioSegment
from io import BytesIO
import numpy as np
import librosa
import tempfile
from twilio.rest import Client
import os
import spaces
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
import logging

# Configure the root logger to WARNING to suppress debug messages from other libraries
logging.basicConfig(level=logging.WARNING)

# Create a console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG)

# Create a formatter
formatter = logging.Formatter("%(name)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)

# Configure the logger for your specific library
logger = logging.getLogger("gradio_webrtc")
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)


processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct")
model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto")

account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")

if account_sid and auth_token:
    client = Client(account_sid, auth_token)

    token = client.tokens.create()

    rtc_configuration = {
        "iceServers": token.ice_servers,
        "iceTransportPolicy": "relay",
    }
else:
    rtc_configuration = None


@spaces.GPU
def transcribe(audio: tuple[int, np.ndarray], transformers_convo: list[dict], gradio_convo: list[dict]):
    segment = AudioSegment(audio[1].tobytes(), frame_rate=audio[0], sample_width=audio[1].dtype.itemsize, channels=1)

    with tempfile.NamedTemporaryFile(suffix=".mp3") as temp_audio:
        segment.export(temp_audio.name, format="mp3")
        transformers_convo.append({"role": "user", "content": [{"type": "audio", "audio_url": temp_audio.name}]})
        gradio_convo.append({"role": "assistant", "content": gr.Audio(value=temp_audio.name)})
        text = processor.apply_chat_template(transformers_convo, add_generation_prompt=True, tokenize=False)
        audios = []
        for message in transformers_convo:
            if isinstance(message["content"], list):
                for ele in message["content"]:
                    if ele["type"] == "audio":
                        audios.append(librosa.load(
                            BytesIO(open(ele['audio_url'], "rb").read()), 
                            sr=processor.feature_extractor.sampling_rate)[0]
                        )
        inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
        inputs = dict(**inputs)
        inputs["input_ids"] = inputs["input_ids"].to("cuda:0")

        generate_ids = model.generate(**inputs, max_length=256)
        generate_ids = generate_ids[:, inputs["input_ids"].size(1):]
        response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        print("response", response)
        transformers_convo.append({"role": "assistant", "content": response})
        gradio_convo.append({"role": "assistant", "content": response})

        yield AdditionalOutputs(transformers_convo, gradio_convo)


with gr.Blocks() as demo:
    transformers_convo = gr.State(value=[])
    with gr.Row():
        with gr.Column():
            audio = WebRTC(
                rtc_configuration=rtc_configuration,
                label="Stream",
                mode="send",
                modality="audio",
            )
        with gr.Column():
            transcript = gr.Chatbot(label="transcript", type="messages")

    audio.stream(ReplyOnPause(transcribe), inputs=[audio, transformers_convo, transcript], outputs=[audio])
    audio.on_additional_outputs(lambda s: s, outputs=[transformers_convo, transcript])

if __name__ == "__main__":
    demo.launch()