# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file. import json from pathlib import Path from typing import Optional, Union import torch class Tokenizer: def __init__(self, checkpoint_dir: Union[Path, str]) -> None: checkpoint_dir = Path(checkpoint_dir) if not checkpoint_dir.exists(): raise NotADirectoryError( f"The checkpoint directory does not exist: {str(checkpoint_dir)}" ) self.use_bos = self.check_if_bos_token_used(checkpoint_dir) self.bos_id = None self.eos_id = None # some checkpoints have both files, `.json` takes precedence if (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file(): from tokenizers import Tokenizer as HFTokenizer self.processor = HFTokenizer.from_file(str(vocabulary_path)) self.backend = "huggingface" if ( special_tokens_path := checkpoint_dir / "tokenizer_config.json" ).is_file(): with open(special_tokens_path, encoding="utf-8") as fp: config = json.load(fp) bos_token = config.get("bos_token") eos_token = config.get("eos_token") if bos_token is not None and isinstance(bos_token, dict): bos_token = bos_token.get("content") if eos_token is not None and isinstance(eos_token, dict): eos_token = eos_token.get("content") self.bos_id = ( self.token_to_id(bos_token) if bos_token is not None else None ) self.eos_id = ( self.token_to_id(eos_token) if eos_token is not None else None ) if ( special_tokens_path := checkpoint_dir / "generation_config.json" ).is_file(): with open(special_tokens_path, encoding="utf-8") as fp: config = json.load(fp) if self.bos_id is None: self.bos_id = config.get("bos_token_id") if self.eos_id is None: self.eos_id = config.get("eos_token_id") elif (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file(): from sentencepiece import SentencePieceProcessor self.processor = SentencePieceProcessor(model_file=str(vocabulary_path)) self.backend = "sentencepiece" self.bos_id = self.processor.bos_id() self.eos_id = self.processor.eos_id() else: raise NotImplementedError @property def vocab_size(self) -> int: if self.backend == "huggingface": return self.processor.get_vocab_size(with_added_tokens=False) if self.backend == "sentencepiece": return self.processor.vocab_size() raise RuntimeError def token_to_id(self, token: str) -> int: if self.backend == "huggingface": id_ = self.processor.token_to_id(token) elif self.backend == "sentencepiece": id_ = self.processor.piece_to_id(token) else: raise RuntimeError if id_ is None: raise ValueError(f"token {token!r} not found in the collection.") return id_ def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool: if not ( tokenizer_config_path := checkpoint_dir / "tokenizer_config.json" ).is_file(): return False with open(tokenizer_config_path, encoding="utf-8") as fp: config = json.load(fp) if "add_bos_token" in config: return config["add_bos_token"] # if `add_bos_token` isn't in the config file, but LLaMA tokenizer is used - return True. # ex: https://huggingface.co./stabilityai/StableBeluga2/blob/main/tokenizer_config.json#L2 return config.get("tokenizer_class") == "LlamaTokenizer" def encode( self, string: str, device: Optional[torch.device] = None, bos: Optional[bool] = None, eos: bool = False, max_length: int = -1, ) -> torch.Tensor: if self.backend == "huggingface": tokens = self.processor.encode(string).ids elif self.backend == "sentencepiece": tokens = self.processor.encode(string) else: raise RuntimeError if bos or (bos is None and self.use_bos): bos_id = self.bos_id if bos_id is None: raise NotImplementedError( "This tokenizer does not have a defined a bos token" ) if tokens[0] != bos_id: tokens = [bos_id] + tokens if tokens is None: raise ValueError("`tokens` is None") if eos and (not tokens or tokens[-1] != self.eos_id): tokens = tokens + [self.eos_id] if max_length > 0: tokens = tokens[:max_length] return torch.tensor(tokens, dtype=torch.int, device=device) def decode(self, tensor: torch.Tensor) -> str: tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist() return self.processor.decode(tokens)