Spaces:
Running
on
T4
Running
on
T4
import logging | |
import base64 | |
import io | |
import os | |
from threading import Thread | |
import gradio as gr | |
import numpy as np | |
import requests | |
from gradio_webrtc import ReplyOnPause, WebRTC, AdditionalOutputs | |
from pydub import AudioSegment | |
from twilio.rest import Client | |
from server import serve | |
logging.basicConfig(level=logging.WARNING) | |
file_handler = logging.FileHandler("gradio_webrtc.log") | |
file_handler.setLevel(logging.DEBUG) | |
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") | |
file_handler.setFormatter(formatter) | |
logger = logging.getLogger("gradio_webrtc") | |
logger.setLevel(logging.DEBUG) | |
logger.addHandler(file_handler) | |
IP = "0.0.0.0" | |
PORT = 60808 | |
thread = Thread(target=serve, daemon=True) | |
thread.start() | |
API_URL = "http://0.0.0.0:60808/chat" | |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
if account_sid and auth_token: | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = { | |
"iceServers": token.ice_servers, | |
"iceTransportPolicy": "relay", | |
} | |
else: | |
rtc_configuration = None | |
OUT_CHANNELS = 1 | |
OUT_RATE = 24000 | |
OUT_SAMPLE_WIDTH = 2 | |
OUT_CHUNK = 20 * 4096 | |
def response(audio: tuple[int, np.ndarray], conversation: list[dict], img: str | None): | |
conversation.append({"role": "user", "content": gr.Audio(audio)}) | |
yield AdditionalOutputs(conversation) | |
sampling_rate, audio_np = audio | |
audio_np = audio_np.squeeze() | |
audio_buffer = io.BytesIO() | |
segment = AudioSegment( | |
audio_np.tobytes(), | |
frame_rate=sampling_rate, | |
sample_width=audio_np.dtype.itemsize, | |
channels=1, | |
) | |
segment.export(audio_buffer, format="wav") | |
conversation.append({"role": "assistant", "content": ""}) | |
base64_encoded = str(base64.b64encode(audio_buffer.getvalue()), encoding="utf-8") | |
if API_URL is not None: | |
output_audio_bytes = b"" | |
files = {"audio": base64_encoded} | |
if img is not None: | |
files["image"] = str(base64.b64encode(open(img, "rb").read()), encoding="utf-8") | |
print("sending request to server") | |
resp_text = "" | |
with requests.post(API_URL, json=files, stream=True) as response: | |
try: | |
buffer = b'' | |
for chunk in response.iter_content(chunk_size=2048): | |
buffer += chunk | |
while b'\r\n--frame\r\n' in buffer: | |
frame, buffer = buffer.split(b'\r\n--frame\r\n', 1) | |
if b'Content-Type: audio/wav' in frame: | |
audio_data = frame.split(b'\r\n\r\n', 1)[1] | |
# audio_data = base64.b64decode(audio_data) | |
output_audio_bytes += audio_data | |
audio_array = np.frombuffer(audio_data, dtype=np.int8).reshape(1, -1) | |
yield (OUT_RATE, audio_array, "mono") | |
elif b'Content-Type: text/plain' in frame: | |
text_data = frame.split(b'\r\n\r\n', 1)[1].decode() | |
resp_text += text_data | |
if len(text_data) > 0: | |
conversation[-1]["content"] = resp_text | |
yield AdditionalOutputs(conversation) | |
except Exception as e: | |
raise Exception(f"Error during audio streaming: {e}") from e | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Mini-Omni-2 Chat (Powered by WebRTC ⚡️) | |
</h1> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
audio = WebRTC( | |
label="Stream", | |
rtc_configuration=rtc_configuration, | |
mode="send-receive", | |
modality="audio", | |
) | |
img = gr.Image(label="Image", type="filepath") | |
with gr.Column(): | |
conversation = gr.Chatbot(label="Conversation", type="messages") | |
audio.stream( | |
fn=ReplyOnPause( | |
response, output_sample_rate=OUT_RATE, output_frame_size=480 | |
), | |
inputs=[audio, conversation, img], | |
outputs=[audio], | |
time_limit=90, | |
) | |
audio.on_additional_outputs(lambda c: c, outputs=[conversation]) | |
demo.launch() | |