Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from ultralyticsplus import YOLO, render_result | |
# Model Heading and Description | |
model_heading = "CandleStickScan: Pattern Recognition for Trading Success" | |
description = """ π―οΈ Introducing CandleScan by Foduu AI π―οΈ | |
Unleash the power of precise pattern recognition with CandleScan, your ultimate companion for deciphering intricate candlestick formations in the world of trading. ππ | |
Unlock the secrets of successful trading by effortlessly identifying crucial candlestick patterns such as 'Head and Shoulders Bottom', 'Head and Shoulders Top', 'M-Head', 'StockLine', 'Triangle', and 'W-Bottom'. ππ | |
Powered by the cutting-edge technology of Foduu AI, CandleScan is your expert guide to navigating the complexities of the market. Whether you're an experienced trader or a novice investor, our app empowers you to make informed decisions with confidence. πΌπ° | |
But that's not all! CandleScan is just the beginning. If you're hungry for more pattern recognition prowess, simply reach out to us at [email protected]. Our dedicated team is ready to assist you in expanding your trading horizons by integrating additional pattern recognition features. π¬π² | |
Show your appreciation for this space-age tool by hitting the 'Like' button and start embarking on a journey towards trading mastery with CandleScan! ππ―οΈπ | |
π§ Contact us: [email protected] | |
π Like | """ | |
image_path= [['test/test1.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45], ['test/test2.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]] | |
# Load YOLO model | |
model = YOLO('foduucom/stockmarket-pattern-detection-yolov8') | |
#############################################################Image Inference############################################################ | |
def yolov8_img_inference( | |
image: gr.inputs.Image = None, | |
model_path: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 640, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
""" | |
YOLOv8 inference function | |
Args: | |
image: Input image | |
model_path: Path to the model | |
image_size: Image size | |
conf_threshold: Confidence threshold | |
iou_threshold: IOU threshold | |
Returns: | |
Rendered image | |
""" | |
model = YOLO(model_path) | |
model.overrides['conf'] = conf_threshold | |
model.overrides['iou']= iou_threshold | |
model.overrides['agnostic_nms'] = False # NMS class-agnostic | |
model.overrides['max_det'] = 1000 | |
image = read_image(image) | |
results = model.predict(image) | |
render = render_result(model=model, image=image, result=results[0]) | |
return render | |
inputs_image = [ | |
gr.inputs.Image(type="filepath", label="Input Image"), | |
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"], | |
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"), | |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs_image =gr.outputs.Image(type="filepath", label="Output Image") | |
interface_image = gr.Interface( | |
fn=yolov8_img_inference, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title=model_heading, | |
description=description, | |
examples=image_path, | |
cache_examples=False, | |
) | |
##################################################Video Inference################################################################ | |
def show_preds_video( | |
video_path: gr.components.Video = None, | |
model_path: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 640, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
""" | |
Video inference function | |
Args: | |
video_path: Input video | |
model_path: Path to the model | |
image_size: Image size | |
conf_threshold: Confidence threshold | |
iou_threshold: IOU threshold | |
Returns: | |
Rendered video | |
""" | |
cap = cv2.VideoCapture(video_path) | |
while cap.isOpened(): | |
success, frame = cap.read() | |
if success: | |
model = YOLO(model_path) | |
model.overrides['conf'] = conf_threshold | |
model.overrides['iou'] = iou_threshold | |
model.overrides['agnostic_nms'] = False | |
model.overrides['max_det'] = 1000 | |
results = model.predict(frame) | |
annotated_frame = results[0].plot() | |
cv2.imshow("YOLOv8 Inference", annotated_frame) | |
if cv2.waitKey(1) & 0xFF == ord("q"): | |
break | |
else: | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
inputs_video = [ | |
gr.components.Video(type="filepath", label="Input Video"), | |
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"], | |
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"), | |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs_video = gr.outputs.Image(type="filepath", label="Output Video") | |
video_path=[['test/video.mp4','foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]] | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title=model_heading, | |
description=description, | |
examples=video_path, | |
cache_examples=True, | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_video], | |
tab_names=['Image inference', 'Video inference'] | |
).queue().launch() | |