fluxdev's picture
Upload folder using huggingface_hub
b1bd80d verified
import torch
import numpy as np
import os
import time
import random
import string
import cv2
from ldm_patched.modules import model_management
def prepare_free_memory(aggressive=False):
if aggressive:
model_management.unload_all_models()
print('Cleanup all memory.')
return
model_management.free_memory(memory_required=model_management.minimum_inference_memory(),
device=model_management.get_torch_device())
print('Cleanup minimal inference memory.')
return
def apply_circular_forge(model, tiling_enabled=False):
if model.tiling_enabled == tiling_enabled:
return
print(f'Tiling: {tiling_enabled}')
model.tiling_enabled = tiling_enabled
def flatten(el):
flattened = [flatten(children) for children in el.children()]
res = [el]
for c in flattened:
res += c
return res
layers = flatten(model)
for layer in [layer for layer in layers if 'Conv' in type(layer).__name__]:
layer.padding_mode = 'circular' if tiling_enabled else 'zeros'
return
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def generate_random_filename(extension=".txt"):
timestamp = time.strftime("%Y%m%d-%H%M%S")
random_string = ''.join(random.choices(string.ascii_lowercase + string.digits, k=5))
filename = f"{timestamp}-{random_string}{extension}"
return filename
@torch.no_grad()
@torch.inference_mode()
def pytorch_to_numpy(x):
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x]
@torch.no_grad()
@torch.inference_mode()
def numpy_to_pytorch(x):
y = x.astype(np.float32) / 255.0
y = y[None]
y = np.ascontiguousarray(y.copy())
y = torch.from_numpy(y).float()
return y
def write_images_to_mp4(frame_list: list, filename=None, fps=6):
from modules.paths_internal import default_output_dir
video_folder = os.path.join(default_output_dir, 'svd')
os.makedirs(video_folder, exist_ok=True)
if filename is None:
filename = generate_random_filename('.mp4')
full_path = os.path.join(video_folder, filename)
try:
import av
except ImportError:
from launch import run_pip
run_pip(
"install imageio[pyav]",
"imageio[pyav]",
)
import av
options = {
"crf": str(23)
}
output = av.open(full_path, "w")
stream = output.add_stream('libx264', fps, options=options)
stream.width = frame_list[0].shape[1]
stream.height = frame_list[0].shape[0]
for img in frame_list:
frame = av.VideoFrame.from_ndarray(img)
packet = stream.encode(frame)
output.mux(packet)
packet = stream.encode(None)
output.mux(packet)
output.close()
return full_path
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def resize_image_with_pad(img, resolution):
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
def lazy_memory_management(model):
required_memory = model_management.module_size(model) + model_management.minimum_inference_memory()
model_management.free_memory(required_memory, device=model_management.get_torch_device())
return