Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import importlib | |
import logging | |
import os | |
from typing import TYPE_CHECKING | |
from urllib.parse import urlparse | |
import torch | |
from modules import shared | |
from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone | |
if TYPE_CHECKING: | |
import spandrel | |
logger = logging.getLogger(__name__) | |
def load_file_from_url( | |
url: str, | |
*, | |
model_dir: str, | |
progress: bool = True, | |
file_name: str | None = None, | |
) -> str: | |
"""Download a file from `url` into `model_dir`, using the file present if possible. | |
Returns the path to the downloaded file. | |
""" | |
os.makedirs(model_dir, exist_ok=True) | |
if not file_name: | |
parts = urlparse(url) | |
file_name = os.path.basename(parts.path) | |
cached_file = os.path.abspath(os.path.join(model_dir, file_name)) | |
if not os.path.exists(cached_file): | |
print(f'Downloading: "{url}" to {cached_file}\n') | |
from torch.hub import download_url_to_file | |
download_url_to_file(url, cached_file, progress=progress) | |
return cached_file | |
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list: | |
""" | |
A one-and done loader to try finding the desired models in specified directories. | |
@param download_name: Specify to download from model_url immediately. | |
@param model_url: If no other models are found, this will be downloaded on upscale. | |
@param model_path: The location to store/find models in. | |
@param command_path: A command-line argument to search for models in first. | |
@param ext_filter: An optional list of filename extensions to filter by | |
@return: A list of paths containing the desired model(s) | |
""" | |
output = [] | |
try: | |
places = [] | |
if command_path is not None and command_path != model_path: | |
pretrained_path = os.path.join(command_path, 'experiments/pretrained_models') | |
if os.path.exists(pretrained_path): | |
print(f"Appending path: {pretrained_path}") | |
places.append(pretrained_path) | |
elif os.path.exists(command_path): | |
places.append(command_path) | |
places.append(model_path) | |
for place in places: | |
for full_path in shared.walk_files(place, allowed_extensions=ext_filter): | |
if os.path.islink(full_path) and not os.path.exists(full_path): | |
print(f"Skipping broken symlink: {full_path}") | |
continue | |
if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist): | |
continue | |
if full_path not in output: | |
output.append(full_path) | |
if model_url is not None and len(output) == 0: | |
if download_name is not None: | |
output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name)) | |
else: | |
output.append(model_url) | |
except Exception: | |
pass | |
return output | |
def friendly_name(file: str): | |
if file.startswith("http"): | |
file = urlparse(file).path | |
file = os.path.basename(file) | |
model_name, extension = os.path.splitext(file) | |
return model_name | |
def load_upscalers(): | |
# We can only do this 'magic' method to dynamically load upscalers if they are referenced, | |
# so we'll try to import any _model.py files before looking in __subclasses__ | |
modules_dir = os.path.join(shared.script_path, "modules") | |
for file in os.listdir(modules_dir): | |
if "_model.py" in file: | |
model_name = file.replace("_model.py", "") | |
full_model = f"modules.{model_name}_model" | |
try: | |
importlib.import_module(full_model) | |
except Exception: | |
pass | |
datas = [] | |
commandline_options = vars(shared.cmd_opts) | |
# some of upscaler classes will not go away after reloading their modules, and we'll end | |
# up with two copies of those classes. The newest copy will always be the last in the list, | |
# so we go from end to beginning and ignore duplicates | |
used_classes = {} | |
for cls in reversed(Upscaler.__subclasses__()): | |
classname = str(cls) | |
if classname not in used_classes: | |
used_classes[classname] = cls | |
for cls in reversed(used_classes.values()): | |
name = cls.__name__ | |
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path" | |
commandline_model_path = commandline_options.get(cmd_name, None) | |
scaler = cls(commandline_model_path) | |
scaler.user_path = commandline_model_path | |
scaler.model_download_path = commandline_model_path or scaler.model_path | |
datas += scaler.scalers | |
shared.sd_upscalers = sorted( | |
datas, | |
# Special case for UpscalerNone keeps it at the beginning of the list. | |
key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else "" | |
) | |
def load_spandrel_model( | |
path: str | os.PathLike, | |
*, | |
device: str | torch.device | None, | |
prefer_half: bool = False, | |
dtype: str | torch.dtype | None = None, | |
expected_architecture: str | None = None, | |
) -> spandrel.ModelDescriptor: | |
import spandrel | |
model_descriptor = spandrel.ModelLoader(device=device).load_from_file(str(path)) | |
if expected_architecture and model_descriptor.architecture != expected_architecture: | |
logger.warning( | |
f"Model {path!r} is not a {expected_architecture!r} model (got {model_descriptor.architecture!r})", | |
) | |
half = False | |
if prefer_half: | |
if model_descriptor.supports_half: | |
model_descriptor.model.half() | |
half = True | |
else: | |
logger.info("Model %s does not support half precision, ignoring --half", path) | |
if dtype: | |
model_descriptor.model.to(dtype=dtype) | |
model_descriptor.model.eval() | |
logger.debug( | |
"Loaded %s from %s (device=%s, half=%s, dtype=%s)", | |
model_descriptor, path, device, half, dtype, | |
) | |
return model_descriptor | |