Spaces:
Runtime error
Runtime error
File size: 6,156 Bytes
442feca ced4137 442feca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import re
import sys
import typing as tp
import unicodedata
import torch
from sacremoses import MosesPunctNormalizer
from sentence_splitter import SentenceSplitter
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
MODEL_URL = "flutter-painter/nllb-fra-fuf-v2"
LANGUAGES = {
"French": "fra_Latn",
"Fula": "fuf_Latn",
}
def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]:
non_printable_map = {
ord(c): replace_by
for c in (chr(i) for i in range(sys.maxunicode + 1))
# same as \p{C} in perl
# see https://www.unicode.org/reports/tr44/#General_Category_Values
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
}
def replace_non_printing_char(line) -> str:
return line.translate(non_printable_map)
return replace_non_printing_char
class TextPreprocessor:
"""
Mimic the text preprocessing made for the NLLB model.
This code is adapted from the Stopes repo of the NLLB team:
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py#L214
"""
def __init__(self, lang="en"):
self.mpn = MosesPunctNormalizer(lang=lang)
self.mpn.substitutions = [
(re.compile(r), sub) for r, sub in self.mpn.substitutions
]
self.replace_nonprint = get_non_printing_char_replacer(" ")
def __call__(self, text: str) -> str:
clean = self.mpn.normalize(text)
clean = self.replace_nonprint(clean)
# replace ππ―ππ«π π’π°π π by Francesca
clean = unicodedata.normalize("NFKC", clean)
return clean
def fix_tokenizer(tokenizer, new_lang="fuf_Latn"):
"""Add a new language token to the tokenizer vocabulary
(this should be done each time after its initialization)
"""
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len - 1
tokenizer.id_to_lang_code[old_len - 1] = new_lang
# always move "mask" to the last position
tokenizer.fairseq_tokens_to_ids["<mask>"] = (
len(tokenizer.sp_model)
+ len(tokenizer.lang_code_to_id)
+ tokenizer.fairseq_offset
)
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {
v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()
}
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
# clear the added token encoder; otherwise a new token may end up there by mistake
tokenizer.added_tokens_encoder = {}
tokenizer.added_tokens_decoder = {}
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
"""Apply a sentence splitter and return the sentences and all separators before and after them"""
if fix_double_space:
text = re.sub(" +", " ", text)
sentences = splitter.split(text)
fillers = []
i = 0
for sentence in sentences:
start_idx = text.find(sentence, i)
if ignore_errors and start_idx == -1:
# print(f"sent not found after {i}: `{sentence}`")
start_idx = i + 1
assert start_idx != -1, f"sent not found after {i}: `{sentence}`"
fillers.append(text[i:start_idx])
i = start_idx + len(sentence)
fillers.append(text[i:])
return sentences, fillers
class Translator:
def __init__(self):
self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL)
if torch.cuda.is_available():
self.model.cuda()
self.tokenizer = NllbTokenizer.from_pretrained(MODEL_URL)
fix_tokenizer(self.tokenizer)
self.splitter = SentenceSplitter("fr")
self.preprocessor = TextPreprocessor()
self.languages = LANGUAGES
def translate(
self,
text,
src_lang="fra_Latn",
tgt_lang="fuf_Latn",
max_length="auto",
num_beams=4,
by_sentence=True,
preprocess=True,
**kwargs,
):
"""Translate a text sentence by sentence, preserving the fillers around the sentences."""
if by_sentence:
sents, fillers = sentenize_with_fillers(
text, splitter=self.splitter, ignore_errors=True
)
else:
sents = [text]
fillers = ["", ""]
if preprocess:
sents = [self.preprocessor(sent) for sent in sents]
results = []
for sent, sep in zip(sents, fillers):
results.append(sep)
results.append(
self.translate_single(
sent,
src_lang=src_lang,
tgt_lang=tgt_lang,
max_length=max_length,
num_beams=num_beams,
**kwargs,
)
)
results.append(fillers[-1])
return "".join(results)
def translate_single(
self,
text,
src_lang="fra_Latn",
tgt_lang="fuf_Latn",
max_length="auto",
num_beams=4,
n_out=None,
**kwargs,
):
self.tokenizer.src_lang = src_lang
encoded = self.tokenizer(
text, return_tensors="pt", truncation=True, max_length=512
)
if max_length == "auto":
max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
generated_tokens = self.model.generate(
**encoded.to(self.model.device),
forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang],
max_length=max_length,
num_beams=num_beams,
num_return_sequences=n_out or 1,
**kwargs,
)
out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
if isinstance(text, str) and n_out is None:
return out[0]
return out
if __name__ == "__main__":
print("Initializing a translator to pre-download models...")
translator = Translator()
print("Initialization successful!") |