Spaces:
Runtime error
Runtime error
flokabukie
commited on
Commit
β’
5b475df
1
Parent(s):
496f914
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
|
9 |
+
# Load the non-anomaly data
|
10 |
+
non_anomaly_csv_filename = 'non_anomaly_data.csv'
|
11 |
+
non_anomaly_df = pd.read_csv(non_anomaly_csv_filename)
|
12 |
+
|
13 |
+
# Open the Mitos Spreadsheet file
|
14 |
+
#st.write("Opening Mitos Spreadsheet file...")
|
15 |
+
#st.csv_open("non_anomaly_data.csv")
|
16 |
+
|
17 |
+
# Display the first sheet
|
18 |
+
#st.write(st.get_active_sheet().name)
|
19 |
+
|
20 |
+
# Display the first row of the first sheet
|
21 |
+
#st.write(st.get_active_sheet().rows[0])
|
22 |
+
|
23 |
+
# Load the Isolation Forest model
|
24 |
+
model_filename = "IsolationForest.joblib"
|
25 |
+
isolation_forest = joblib.load(model_filename)
|
26 |
+
|
27 |
+
# Load the StandardScaler
|
28 |
+
scaler_filename = "StandardScaler.joblib"
|
29 |
+
scaler = joblib.load(scaler_filename)
|
30 |
+
|
31 |
+
st.title("Anomaly Detection App with Isolation Forest")
|
32 |
+
|
33 |
+
st.sidebar.title("Input Feature Values")
|
34 |
+
transaction_dollar_amount = st.sidebar.slider("Transaction Dollar Amount", min_value=0.0, max_value=10000.0)
|
35 |
+
longitude = st.sidebar.slider("Longitude (Long)", min_value=-180.0, max_value=180.0)
|
36 |
+
latitude = st.sidebar.slider("Latitude (Lat)", min_value=-90.0, max_value=90.0)
|
37 |
+
credit_card_limit = st.sidebar.slider("Credit Card Limit", min_value=0, max_value=50000)
|
38 |
+
year = st.sidebar.slider("Year", min_value=2000, max_value=2030)
|
39 |
+
month = st.sidebar.slider("Month", min_value=1, max_value=12)
|
40 |
+
day = st.sidebar.slider("Day", min_value=1, max_value=31)
|
41 |
+
|
42 |
+
submitted = st.sidebar.button("Submit")
|
43 |
+
|
44 |
+
if submitted:
|
45 |
+
input_data = {
|
46 |
+
'transaction_dollar_amount': transaction_dollar_amount,
|
47 |
+
'Long': longitude,
|
48 |
+
'Lat': latitude,
|
49 |
+
'credit_card_limit': credit_card_limit,
|
50 |
+
'year': year,
|
51 |
+
'month': month,
|
52 |
+
'day': day
|
53 |
+
}
|
54 |
+
|
55 |
+
selected_columns = pd.DataFrame([input_data])
|
56 |
+
|
57 |
+
# Standardize the input data using the loaded StandardScaler
|
58 |
+
selected_columns_scaled = scaler.transform(selected_columns)
|
59 |
+
|
60 |
+
# Apply Isolation Forest for anomaly detection on the non-anomaly dataset
|
61 |
+
non_anomaly_scores = isolation_forest.decision_function(scaler.transform(non_anomaly_df))
|
62 |
+
|
63 |
+
# Apply Isolation Forest for anomaly detection on your single input data
|
64 |
+
your_anomaly_score = isolation_forest.decision_function(selected_columns_scaled)[0]
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
# Calculate the minimum and maximum anomaly scores from non-anomaly data
|
69 |
+
min_non_anomaly_score = np.min(non_anomaly_scores)
|
70 |
+
max_non_anomaly_score = np.max(non_anomaly_scores)
|
71 |
+
|
72 |
+
# Add a margin of error for the range
|
73 |
+
margin = 0.5
|
74 |
+
min_threshold = min_non_anomaly_score - margin
|
75 |
+
max_threshold = max_non_anomaly_score + margin
|
76 |
+
|
77 |
+
# Determine if the input data point is an anomaly based on the score
|
78 |
+
#is_anomaly = your_anomaly_score >= np.percentile(non_anomaly_scores, 95)
|
79 |
+
|
80 |
+
# Determine if the input data point is an anomaly based on the score
|
81 |
+
is_anomaly = your_anomaly_score < min_threshold or your_anomaly_score > max_threshold
|
82 |
+
|
83 |
+
|
84 |
+
# Print the anomaly status
|
85 |
+
st.subheader("Anomaly Classification")
|
86 |
+
if is_anomaly:
|
87 |
+
st.write("Prediction Result: π¨ Anomaly Detected!")
|
88 |
+
else:
|
89 |
+
st.write("Prediction Result: β
Not Anomaly")
|
90 |
+
|
91 |
+
# Create a bar plot to visualize the anomaly score distribution and your data point's score
|
92 |
+
plt.figure(figsize=(8, 5))
|
93 |
+
|
94 |
+
# Plot the distribution of anomaly scores from the non-anomaly dataset
|
95 |
+
sns.histplot(non_anomaly_scores, kde=True, color='gray', label='Non-Anomaly Score Distribution')
|
96 |
+
|
97 |
+
# Plot your data point's anomaly score
|
98 |
+
plt.axvline(x=your_anomaly_score, color='blue', linestyle='dashed', label='Your Data Point')
|
99 |
+
|
100 |
+
# Set labels and title
|
101 |
+
plt.xlabel('Anomaly Score')
|
102 |
+
plt.ylabel('Frequency')
|
103 |
+
plt.title('Anomaly Score Distribution and Your Data Point')
|
104 |
+
plt.legend()
|
105 |
+
#plt.grid(True)
|
106 |
+
|
107 |
+
# Display the histogram plot
|
108 |
+
st.pyplot(plt)
|
109 |
+
|
110 |
+
|
111 |
+
# Explain the results
|
112 |
+
st.write("The input data point has been classified as an anomaly." if is_anomaly
|
113 |
+
else "The input data point is not classified as an anomaly.")
|
114 |
+
st.write("The anomaly score is:", your_anomaly_score)
|
115 |
+
st.write("The threshold for anomaly detection is:", min_threshold, "to", max_threshold)
|
116 |
+
|
117 |
+
# Create a scatter plot for longitude and latitude
|
118 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
119 |
+
|
120 |
+
# Plot non-anomaly data
|
121 |
+
sns.scatterplot(data=non_anomaly_df, x='Long', y='Lat', color='lightgrey', label='Normal ποΈ', ax=ax)
|
122 |
+
|
123 |
+
# Plot input data
|
124 |
+
if is_anomaly:
|
125 |
+
ax.scatter(selected_columns['Long'], selected_columns['Lat'], color='red', label='Suspicious π©', s=100, marker='x')
|
126 |
+
anomaly_marker = 'Suspicious π©'
|
127 |
+
else:
|
128 |
+
ax.scatter(selected_columns['Long'], selected_columns['Lat'], color='green', label='Valid β
', s=100, marker='o')
|
129 |
+
anomaly_marker = 'Valid β
'
|
130 |
+
|
131 |
+
ax.set_xlabel("Longitude")
|
132 |
+
ax.set_ylabel("Latitude")
|
133 |
+
ax.set_title("Location Plot: Anomaly Detection πΊοΈ")
|
134 |
+
ax.legend()
|
135 |
+
ax.grid(True)
|
136 |
+
|
137 |
+
# Show the scatter plot in Streamlit
|
138 |
+
st.subheader("Location Plot: Anomaly Detection πΊοΈ")
|
139 |
+
st.pyplot(fig)
|
140 |
+
|
141 |
+
# Explanation based on the anomaly classification
|
142 |
+
st.subheader("Anomaly Classification")
|
143 |
+
if your_anomaly_score < min_threshold or your_anomaly_score > max_threshold:
|
144 |
+
st.write("Prediction Result: π¨ Anomaly Detected!")
|
145 |
+
else:
|
146 |
+
st.write("Prediction Result: β
Not Anomaly")
|
147 |
+
|
148 |
+
# Explain the results
|
149 |
+
# Explain the results
|
150 |
+
st.write("The location plot visualizes the anomaly detection result based on longitude and latitude.")
|
151 |
+
if your_anomaly_score < min_threshold or your_anomaly_score > max_threshold:
|
152 |
+
st.write("The input data point is marked as Suspicious π© due to its anomaly score.")
|
153 |
+
st.write("The red 'x' marker indicates a suspicious location.")
|
154 |
+
else:
|
155 |
+
st.write("The input data point is marked as Valid β
due to its anomaly score.")
|
156 |
+
st.write("The green 'o' marker indicates a valid location.")
|