flocolombari commited on
Commit
d4bf58f
1 Parent(s): 1bdad60

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -1,13 +1,15 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
  import cv2
 
 
4
 
5
  def video_to_descriptions(video):
6
  # Charger le modèle via pipeline
7
- model = pipeline('image-to-text', model='nlpconnect/vit-gpt2-image-captioning')
8
 
9
  # Ouvrir la vidéo
10
- cap = cv2.VideoCapture(video)
11
  fps = int(cap.get(cv2.CAP_PROP_FPS))
12
 
13
  descriptions = []
@@ -22,8 +24,10 @@ def video_to_descriptions(video):
22
  if frame_count % (fps // 2) == 0:
23
  # Convertir l'image en RGB
24
  frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 
 
25
  # Obtenir la description de l'image
26
- outputs = model(frame_rgb)
27
  description = outputs[0]['describe-text']
28
  descriptions.append(description)
29
 
 
1
  import gradio as gr
2
  from transformers import pipeline
3
  import cv2
4
+ from PIL import Image
5
+ import io
6
 
7
  def video_to_descriptions(video):
8
  # Charger le modèle via pipeline
9
+ model = pipeline('text2text-generation', model='nlpconnect/vit-gpt2-image-captioning')
10
 
11
  # Ouvrir la vidéo
12
+ cap = cv2.VideoCapture(video.name)
13
  fps = int(cap.get(cv2.CAP_PROP_FPS))
14
 
15
  descriptions = []
 
24
  if frame_count % (fps // 2) == 0:
25
  # Convertir l'image en RGB
26
  frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
27
+ # Convertir le tableau numpy en une image PIL
28
+ pil_img = Image.fromarray(frame_rgb)
29
  # Obtenir la description de l'image
30
+ outputs = model(pil_img)
31
  description = outputs[0]['describe-text']
32
  descriptions.append(description)
33