flocolombari
commited on
Commit
•
6e90515
1
Parent(s):
6e075d9
Update app.py
Browse files
app.py
CHANGED
@@ -8,75 +8,69 @@ import os
|
|
8 |
#Commit
|
9 |
def video_to_descriptions(video, target_language="en"):
|
10 |
# Load the image-to-text and summarization pipelines
|
11 |
-
ImgToText = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
12 |
-
Summarize = pipeline("summarization", model="tuner007/pegasus_summarizer")
|
13 |
|
14 |
# Load the translation pipeline for the target language
|
15 |
-
translator = pipeline("translation", model=f"Helsinki-NLP/opus-mt-en-{target_language}")
|
16 |
audio = pipeline("text-to-speech", model="suno/bark")
|
17 |
-
|
18 |
-
|
19 |
-
cap = cv2.VideoCapture(video)
|
20 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
21 |
-
|
22 |
-
descriptions = []
|
23 |
-
frame_count = 0
|
24 |
-
|
25 |
-
while True:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
cap.release()
|
46 |
|
47 |
-
|
48 |
-
concatenated_description = " ".join(descriptions)
|
49 |
-
summarized_description = Summarize(concatenated_description, max_length=31)[0]["summary_text"]
|
50 |
-
print("SUMMARIZATION : " + summarized_description)
|
51 |
|
52 |
-
translated_text = translator(summarized_description)[0]["translation_text"]
|
53 |
-
print("TRANSLATION : " + translated_text)
|
54 |
|
55 |
-
print(audio(
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
return translated_text
|
62 |
|
63 |
# Create a dropdown menu with language options
|
64 |
language_dropdown = gr.Dropdown(
|
65 |
["en", "fr", "de", "es"], label="Language", info="The Language of the output"
|
66 |
)
|
67 |
-
example_videos = [
|
68 |
-
"./meduses.mp4",
|
69 |
-
"./paysage.mp4",
|
70 |
-
# Add more example video file paths as needed
|
71 |
-
]
|
72 |
|
73 |
# Create a dropdown menu with example video options
|
74 |
-
example_video_dropdown = gr.Dropdown(example_videos, label="Exemples de vidéos")
|
75 |
iface = gr.Interface(
|
76 |
fn=video_to_descriptions,
|
77 |
-
inputs=[
|
78 |
-
|
79 |
-
outputs="text",
|
80 |
live=False
|
81 |
)
|
82 |
|
|
|
8 |
#Commit
|
9 |
def video_to_descriptions(video, target_language="en"):
|
10 |
# Load the image-to-text and summarization pipelines
|
11 |
+
#ImgToText = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
12 |
+
#Summarize = pipeline("summarization", model="tuner007/pegasus_summarizer")
|
13 |
|
14 |
# Load the translation pipeline for the target language
|
15 |
+
#translator = pipeline("translation", model=f"Helsinki-NLP/opus-mt-en-{target_language}")
|
16 |
audio = pipeline("text-to-speech", model="suno/bark")
|
17 |
+
#
|
18 |
+
## Open the video
|
19 |
+
#cap = cv2.VideoCapture(video)
|
20 |
+
#fps = int(cap.get(cv2.CAP_PROP_FPS))
|
21 |
+
#
|
22 |
+
#descriptions = []
|
23 |
+
#frame_count = 0
|
24 |
+
#
|
25 |
+
#while True:
|
26 |
+
# ret, frame = cap.read()
|
27 |
+
# if not ret:
|
28 |
+
# break
|
29 |
+
#
|
30 |
+
# # Extract an image every 2 seconds
|
31 |
+
# if frame_count % (fps * 2) == 0:
|
32 |
+
# # Convert the image to RGB
|
33 |
+
# frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
34 |
+
# # Convert the numpy array to a PIL image
|
35 |
+
# pil_img = Image.fromarray(frame_rgb)
|
36 |
+
# # Get the image description
|
37 |
+
# outputs = ImgToText(pil_img)
|
38 |
+
# description = outputs[0]['generated_text']
|
39 |
+
# descriptions.append(description)
|
40 |
+
# print(str(frame_count) + " : " + outputs[0]['generated_text'])
|
41 |
+
#
|
42 |
+
# frame_count += 1
|
43 |
|
44 |
+
## Close the video reader
|
45 |
+
#cap.release()
|
46 |
|
47 |
+
## Concatenate the descriptions
|
48 |
+
#concatenated_description = " ".join(descriptions)
|
49 |
+
#summarized_description = Summarize(concatenated_description, max_length=31)[0]["summary_text"]
|
50 |
+
#print("SUMMARIZATION : " + summarized_description)
|
51 |
|
52 |
+
#translated_text = translator(summarized_description)[0]["translation_text"]
|
53 |
+
#print("TRANSLATION : " + translated_text)
|
54 |
|
55 |
+
print(audio("bonjour je m'appelle Florent et je fais un test"))
|
56 |
|
57 |
+
audio_file = audio("bonjour je m'appelle Florent et je fais un test")
|
58 |
+
print(audio_file)
|
59 |
|
60 |
+
return audio_file
|
61 |
+
#return translated_text
|
62 |
|
63 |
# Create a dropdown menu with language options
|
64 |
language_dropdown = gr.Dropdown(
|
65 |
["en", "fr", "de", "es"], label="Language", info="The Language of the output"
|
66 |
)
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Create a dropdown menu with example video options
|
|
|
69 |
iface = gr.Interface(
|
70 |
fn=video_to_descriptions,
|
71 |
+
inputs=[gr.Video(label="Import a Video", info="The Video to be described"), language_dropdown],
|
72 |
+
outputs="audio",
|
73 |
+
#outputs="text",
|
74 |
live=False
|
75 |
)
|
76 |
|