flocolombari's picture
Update app.py
5c64ea3
raw
history blame
2.38 kB
import gradio as gr
from transformers import pipeline
import cv2
from PIL import Image
import io
# Import the translation pipeline
from transformers import pipeline as translation_pipeline
def video_to_descriptions(video, target_language="en"):
# Load the image-to-text and summarization pipelines
ImgToText = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
Summarize = pipeline("summarization", model="tuner007/pegasus_summarizer")
# Load the translation pipeline for the target language
translator = translation_pipeline("translation", model=f"Helsinki-NLP/opus-mt-en-{target_language}")
audio = pipeline("text-to-speech", model="suno/bark")
# Open the video
cap = cv2.VideoCapture(video)
fps = int(cap.get(cv2.CAP_PROP_FPS))
descriptions = []
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Extract an image every 2 seconds
if frame_count % (fps * 2) == 0:
# Convert the image to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Convert the numpy array to a PIL image
pil_img = Image.fromarray(frame_rgb)
# Get the image description
outputs = ImgToText(pil_img)
description = outputs[0]['generated_text']
descriptions.append(description)
frame_count += 1
# Close the video reader
cap.release()
# Concatenate the descriptions
concatenated_descriptions = " ".join(descriptions)
concatenated_descriptions = Summarize(concatenated_descriptions, max_length=(len(concatenated_descriptions) / 3))
# Translate the summarized text into the target language
translated_text = translator(concatenated_descriptions[0]["summarized-text"])[0]["translation_text"]
audio_file = audio(translated_text)[0]["audio"]
return audio_file
# Create a dropdown menu with language options
language_dropdown = gr.Dropdown(
["en", "fr", "de", "es"], label="Language", info="The Language of the output"
)
iface = gr.Interface(
fn=video_to_descriptions,
inputs=[gr.Video(label="Import a Video", info="The Video to be described"), language_dropdown],
outputs="audio",
live=False
)
if __name__ == "__main__":
iface.launch()