Spaces:
Runtime error
Runtime error
gchhablani
commited on
Commit
•
7fe8d4e
1
Parent(s):
324f080
Add missing files
Browse files- .gitignore +3 -0
- requirements.txt +8 -0
- sections/abstract.md +0 -0
- sections/acknowledgements.md +0 -0
- sections/caveats.md +0 -0
- sections/challenges.md +0 -0
- sections/pretraining.md +0 -0
- sections/references.md +0 -0
- sections/social_impact.md +0 -0
- sections/usage.md +0 -0
- session.py +89 -0
- utils.py +1 -18
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*mic_env/*
|
2 |
+
**__pycache__**
|
3 |
+
*.pyc
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
plotly==5.1.0
|
2 |
+
streamlit==0.84.1
|
3 |
+
git+https://github.com/huggingface/transformers.git
|
4 |
+
torchvision==0.10.0
|
5 |
+
mtranslate==1.8
|
6 |
+
black==21.7b0
|
7 |
+
flax==0.3.4
|
8 |
+
sentencepiece==0.1.96
|
sections/abstract.md
ADDED
File without changes
|
sections/acknowledgements.md
ADDED
File without changes
|
sections/caveats.md
ADDED
File without changes
|
sections/challenges.md
ADDED
File without changes
|
sections/pretraining.md
ADDED
File without changes
|
sections/references.md
ADDED
File without changes
|
sections/social_impact.md
ADDED
File without changes
|
sections/usage.md
ADDED
File without changes
|
session.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Code for managing session state, which is needed for multi-input forms
|
3 |
+
# See https://github.com/streamlit/streamlit/issues/1557
|
4 |
+
#
|
5 |
+
# This code is taken from
|
6 |
+
# https://gist.github.com/okld/0aba4869ba6fdc8d49132e6974e2e662
|
7 |
+
#
|
8 |
+
from streamlit.hashing import _CodeHasher
|
9 |
+
from streamlit.report_thread import get_report_ctx
|
10 |
+
from streamlit.server.server import Server
|
11 |
+
|
12 |
+
|
13 |
+
class _SessionState:
|
14 |
+
def __init__(self, session, hash_funcs):
|
15 |
+
"""Initialize SessionState instance."""
|
16 |
+
self.__dict__["_state"] = {
|
17 |
+
"data": {},
|
18 |
+
"hash": None,
|
19 |
+
"hasher": _CodeHasher(hash_funcs),
|
20 |
+
"is_rerun": False,
|
21 |
+
"session": session,
|
22 |
+
}
|
23 |
+
|
24 |
+
def __call__(self, **kwargs):
|
25 |
+
"""Initialize state data once."""
|
26 |
+
for item, value in kwargs.items():
|
27 |
+
if item not in self._state["data"]:
|
28 |
+
self._state["data"][item] = value
|
29 |
+
|
30 |
+
def __getitem__(self, item):
|
31 |
+
"""Return a saved state value, None if item is undefined."""
|
32 |
+
return self._state["data"].get(item, None)
|
33 |
+
|
34 |
+
def __getattr__(self, item):
|
35 |
+
"""Return a saved state value, None if item is undefined."""
|
36 |
+
return self._state["data"].get(item, None)
|
37 |
+
|
38 |
+
def __setitem__(self, item, value):
|
39 |
+
"""Set state value."""
|
40 |
+
self._state["data"][item] = value
|
41 |
+
|
42 |
+
def __setattr__(self, item, value):
|
43 |
+
"""Set state value."""
|
44 |
+
self._state["data"][item] = value
|
45 |
+
|
46 |
+
def clear(self):
|
47 |
+
"""Clear session state and request a rerun."""
|
48 |
+
self._state["data"].clear()
|
49 |
+
self._state["session"].request_rerun()
|
50 |
+
|
51 |
+
def sync(self):
|
52 |
+
"""
|
53 |
+
Rerun the app with all state values up to date from the beginning to
|
54 |
+
fix rollbacks.
|
55 |
+
"""
|
56 |
+
data_to_bytes = self._state["hasher"].to_bytes(self._state["data"], None)
|
57 |
+
|
58 |
+
# Ensure to rerun only once to avoid infinite loops
|
59 |
+
# caused by a constantly changing state value at each run.
|
60 |
+
#
|
61 |
+
# Example: state.value += 1
|
62 |
+
if self._state["is_rerun"]:
|
63 |
+
self._state["is_rerun"] = False
|
64 |
+
|
65 |
+
elif self._state["hash"] is not None:
|
66 |
+
if self._state["hash"] != data_to_bytes:
|
67 |
+
self._state["is_rerun"] = True
|
68 |
+
self._state["session"].request_rerun()
|
69 |
+
|
70 |
+
self._state["hash"] = data_to_bytes
|
71 |
+
|
72 |
+
|
73 |
+
def _get_session():
|
74 |
+
session_id = get_report_ctx().session_id
|
75 |
+
session_info = Server.get_current()._get_session_info(session_id)
|
76 |
+
|
77 |
+
if session_info is None:
|
78 |
+
raise RuntimeError("Couldn't get your Streamlit Session object.")
|
79 |
+
|
80 |
+
return session_info.session
|
81 |
+
|
82 |
+
|
83 |
+
def _get_state(hash_funcs=None):
|
84 |
+
session = _get_session()
|
85 |
+
|
86 |
+
if not hasattr(session, "_custom_session_state"):
|
87 |
+
session._custom_session_state = _SessionState(session, hash_funcs)
|
88 |
+
|
89 |
+
return session._custom_session_state
|
utils.py
CHANGED
@@ -3,7 +3,6 @@ import torch
|
|
3 |
import numpy as np
|
4 |
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
5 |
from torchvision.transforms.functional import InterpolationMode
|
6 |
-
from transformers import MBart50TokenizerFast
|
7 |
from PIL import Image
|
8 |
|
9 |
|
@@ -28,24 +27,8 @@ class Transform(torch.nn.Module):
|
|
28 |
|
29 |
transform = Transform(224)
|
30 |
|
31 |
-
|
32 |
def get_transformed_image(image):
|
33 |
if image.shape[-1] == 3 and isinstance(image, np.ndarray):
|
34 |
image = image.transpose(2, 0, 1)
|
35 |
image = torch.tensor(image)
|
36 |
-
return transform(image).unsqueeze(0).permute(0, 2, 3, 1).numpy()
|
37 |
-
|
38 |
-
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
|
39 |
-
|
40 |
-
language_mapping = {
|
41 |
-
"english": "en_XX",
|
42 |
-
"german": "de_DE",
|
43 |
-
"french": "fr_XX",
|
44 |
-
"spanish": "es_XX"
|
45 |
-
}
|
46 |
-
|
47 |
-
def generate_sequence(model, pixel_values, lang_code):
|
48 |
-
lang_code = language_mapping[lang_code]
|
49 |
-
output_ids = model.generate(input_ids=pixel_values, decoder_start_token_id=tokenizer.lang_code_to_id[lang_code], max_length=64, num_beams=4)
|
50 |
-
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
|
51 |
-
return output_sequence
|
|
|
3 |
import numpy as np
|
4 |
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
5 |
from torchvision.transforms.functional import InterpolationMode
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
|
|
|
27 |
|
28 |
transform = Transform(224)
|
29 |
|
|
|
30 |
def get_transformed_image(image):
|
31 |
if image.shape[-1] == 3 and isinstance(image, np.ndarray):
|
32 |
image = image.transpose(2, 0, 1)
|
33 |
image = torch.tensor(image)
|
34 |
+
return transform(image).unsqueeze(0).permute(0, 2, 3, 1).numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|