Spaces:
Runtime error
Runtime error
ydshieh
commited on
Commit
·
8f85ccf
1
Parent(s):
d1befcb
fix closed image issue
Browse files
app.py
CHANGED
@@ -39,55 +39,59 @@ with st.sidebar.form("file-uploader-form", clear_on_submit=True):
|
|
39 |
submitted = st.form_submit_button("Upload")
|
40 |
if submitted and uploaded_file is not None:
|
41 |
bytes_data = io.BytesIO(uploaded_file.getvalue())
|
42 |
-
uploaded_file = None
|
43 |
-
submitted = None
|
44 |
-
|
45 |
-
image_id = random_image_id
|
46 |
-
if sample_image_id != "None":
|
47 |
-
assert type(sample_image_id) == int
|
48 |
-
image_id = sample_image_id
|
49 |
-
|
50 |
-
sample_name = f"COCO_val2017_{str(image_id).zfill(12)}.jpg"
|
51 |
-
sample_path = os.path.join(sample_dir, sample_name)
|
52 |
-
|
53 |
-
if bytes_data is not None:
|
54 |
-
image = Image.open(bytes_data)
|
55 |
-
bytes_data = None
|
56 |
-
elif os.path.isfile(sample_path):
|
57 |
-
image = Image.open(sample_path)
|
58 |
-
else:
|
59 |
-
url = f"http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg"
|
60 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
61 |
-
|
62 |
-
width, height = image.size
|
63 |
-
resized = image
|
64 |
-
if height > 384:
|
65 |
-
width = int(width / height * 384)
|
66 |
-
height = 384
|
67 |
-
resized = resized.resize(size=(width, height))
|
68 |
-
if width > 512:
|
69 |
-
width = 512
|
70 |
-
height = int(height / width * 512)
|
71 |
-
resized = resized.resize(size=(width, height))
|
72 |
-
|
73 |
-
|
74 |
-
st.markdown(f"[{str(image_id).zfill(12)}.jpg](http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg)")
|
75 |
-
show = st.image(resized)
|
76 |
-
show.image(resized, '\n\nSelected Image')
|
77 |
-
resized.close()
|
78 |
|
79 |
-
|
80 |
-
st.sidebar.write('\n')
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
caption_en = caption
|
87 |
-
st.header(f'Predicted caption:\n\n')
|
88 |
-
st.subheader(caption_en)
|
89 |
-
|
90 |
-
st.sidebar.header("ViT-GPT2 predicts:")
|
91 |
-
st.sidebar.write(f"**English**: {caption}")
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
submitted = st.form_submit_button("Upload")
|
40 |
if submitted and uploaded_file is not None:
|
41 |
bytes_data = io.BytesIO(uploaded_file.getvalue())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
if (bytes_data is None) and submitted:
|
|
|
44 |
|
45 |
+
st.write("No file is selected to upload")
|
46 |
|
47 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
image_id = random_image_id
|
50 |
+
if sample_image_id != "None":
|
51 |
+
assert type(sample_image_id) == int
|
52 |
+
image_id = sample_image_id
|
53 |
+
|
54 |
+
sample_name = f"COCO_val2017_{str(image_id).zfill(12)}.jpg"
|
55 |
+
sample_path = os.path.join(sample_dir, sample_name)
|
56 |
+
|
57 |
+
if bytes_data is not None:
|
58 |
+
image = Image.open(bytes_data)
|
59 |
+
elif os.path.isfile(sample_path):
|
60 |
+
image = Image.open(sample_path)
|
61 |
+
else:
|
62 |
+
url = f"http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg"
|
63 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
64 |
+
|
65 |
+
width, height = image.size
|
66 |
+
resized = image.resize(size=(width, height))
|
67 |
+
if height > 384:
|
68 |
+
width = int(width / height * 384)
|
69 |
+
height = 384
|
70 |
+
resized = resized.resize(size=(width, height))
|
71 |
+
width, height = resized.size
|
72 |
+
if width > 512:
|
73 |
+
width = 512
|
74 |
+
height = int(height / width * 512)
|
75 |
+
resized = resized.resize(size=(width, height))
|
76 |
+
|
77 |
+
if bytes_data is None:
|
78 |
+
st.markdown(f"[{str(image_id).zfill(12)}.jpg](http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg)")
|
79 |
+
show = st.image(resized)
|
80 |
+
show.image(resized, '\n\nSelected Image')
|
81 |
+
resized.close()
|
82 |
+
|
83 |
+
# For newline
|
84 |
+
st.sidebar.write('\n')
|
85 |
+
|
86 |
+
with st.spinner('Generating image caption ...'):
|
87 |
+
|
88 |
+
caption = predict(image)
|
89 |
+
|
90 |
+
caption_en = caption
|
91 |
+
st.header(f'Predicted caption:\n\n')
|
92 |
+
st.subheader(caption_en)
|
93 |
+
|
94 |
+
st.sidebar.header("ViT-GPT2 predicts: ")
|
95 |
+
st.sidebar.write(f"{caption}")
|
96 |
+
|
97 |
+
image.close()
|
model.py
CHANGED
@@ -47,6 +47,7 @@ def generate(pixel_values):
|
|
47 |
def predict(image):
|
48 |
|
49 |
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
|
|
50 |
output_ids = generate(pixel_values)
|
51 |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
52 |
preds = [pred.strip() for pred in preds]
|
@@ -58,7 +59,7 @@ def _compile():
|
|
58 |
|
59 |
image_path = 'samples/val_000000039769.jpg'
|
60 |
image = Image.open(image_path)
|
61 |
-
|
62 |
image.close()
|
63 |
|
64 |
|
|
|
47 |
def predict(image):
|
48 |
|
49 |
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
50 |
+
|
51 |
output_ids = generate(pixel_values)
|
52 |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
53 |
preds = [pred.strip() for pred in preds]
|
|
|
59 |
|
60 |
image_path = 'samples/val_000000039769.jpg'
|
61 |
image = Image.open(image_path)
|
62 |
+
predict(image)
|
63 |
image.close()
|
64 |
|
65 |
|