fkunn1326's picture
Update app.py
e388d1f
import os
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from uniformer import uniformer_small
from imagenet_class_index import imagenet_classnames
import gradio as gr
from huggingface_hub import hf_hub_download
def inference(img):
image = img
image_transform = T.Compose(
[
T.Resize(224),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
image = image_transform(image)
# The model expects inputs of shape: B x C x H x W
image = image.unsqueeze(0)
prediction = model(image)
prediction = F.softmax(prediction, dim=1).flatten()
return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
# Device on which to run the model
# Set to cuda to load on GPU
device = "cpu"
model_path = hf_hub_download(repo_id="Sense-X/uniformer_image", filename="uniformer_small_in1k.pth")
# Pick a pretrained model
model = uniformer_small()
state_dict = torch.load(model_path, map_location='cpu')
model.load_state_dict(state_dict['model'])
# Set to eval mode and move to desired device
model = model.to(device)
model = model.eval()
# Create an id to label name mapping
imagenet_id_to_classname = {}
for k, v in imagenet_classnames.items():
imagenet_id_to_classname[k] = v[1]
inputs = gr.inputs.Image(type='pil')
label = gr.outputs.Label(num_top_classes=5)
title = "UniFormer-S"
description = "Gradio demo for UniFormer: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.09450' target='_blank'>UniFormer: Unifying Convolution and Self-attention for Visual Recognition</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>"
gr.Interface(
inference, inputs, outputs=label,
title=title, description=description, article=article,
examples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']]
).launch(enable_queue=True)