|
from operator import mod |
|
import os |
|
|
|
import imageio |
|
import shutil |
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from scipy.spatial.transform import Rotation as R |
|
from mGPT.render.renderer import get_renderer |
|
from mGPT.render.rendermotion import render_video |
|
|
|
|
|
|
|
|
|
def parsename(path): |
|
basebane = os.path.basename(path) |
|
base = os.path.splitext(basebane)[0] |
|
strs = base.split('_') |
|
key = strs[-2] |
|
action = strs[-1] |
|
return key, action |
|
|
|
|
|
def load_anim(path, timesize=None): |
|
data = np.array(imageio.mimread(path, memtest=False)) |
|
if timesize is None: |
|
return data |
|
|
|
|
|
|
|
|
|
alldata = data |
|
|
|
|
|
if len(data.shape) == 3 and len(alldata.shape) == 4: |
|
data = data[:, None, :, :] |
|
|
|
|
|
lenanim = data.shape[0] |
|
alldata[:lenanim] = data[:lenanim] |
|
return alldata |
|
|
|
|
|
def plot_3d_motion_dico(x): |
|
motion, length, save_path, params, kargs = x |
|
plot_3d_motion(motion, length, save_path, params, **kargs) |
|
|
|
|
|
def plot_3d_motion(motion, |
|
length, |
|
save_path, |
|
params, |
|
title="", |
|
interval=50, |
|
pred_cam=None, |
|
imgs=None, |
|
bbox=None, |
|
side=None): |
|
|
|
|
|
if motion.shape[1] == 6890: |
|
|
|
|
|
width = 600 |
|
height = 600 |
|
if pred_cam is None: |
|
|
|
cam = (0.8, 0.8, 0, 0.1) |
|
|
|
else: |
|
assert bbox is not None |
|
assert imgs is not None |
|
|
|
|
|
|
|
|
|
|
|
cam = np.concatenate( |
|
(pred_cam[:, [0]], pred_cam[:, [0]], pred_cam[:, 1:3]), axis=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cam_pose = np.eye(4) |
|
cam_pose[0:3, 0:3] = R.from_euler('x', -90, degrees=True).as_matrix() |
|
cam_pose[0:3, 3] = [0, 0, 0] |
|
if side: |
|
rz = np.eye(4) |
|
rz[0:3, 0:3] = R.from_euler('z', -90, degrees=True).as_matrix() |
|
cam_pose = np.matmul(rz, cam_pose) |
|
|
|
|
|
|
|
|
|
backgrounds = imgs if imgs is not None else np.ones( |
|
(height, width, 3)) * 255 |
|
renderer = get_renderer(width, height, cam_pose) |
|
|
|
|
|
meshes = motion |
|
key, action = parsename(save_path) |
|
render_video(meshes, |
|
key, |
|
action, |
|
renderer, |
|
save_path, |
|
backgrounds, |
|
cam_pose, |
|
cams=cam) |
|
return |
|
|
|
|
|
def stack_images(real, real_gens, gen, real_imgs=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nleft_cols = len(real_gens) + 1 |
|
print("Stacking frames..") |
|
allframes = np.concatenate( |
|
(real[:, None, ...], *[x[:, None, ...] for x in real_gens], gen), 1) |
|
nframes, nspa, nats, h, w, pix = allframes.shape |
|
|
|
blackborder = np.zeros((w // 30, h * nats, pix), dtype=allframes.dtype) |
|
|
|
frames = [] |
|
for frame_idx in tqdm(range(nframes)): |
|
columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, |
|
0)).transpose( |
|
3, 1, 0, 2) |
|
frame = np.concatenate( |
|
(*columns[0:nleft_cols], blackborder, *columns[nleft_cols:]), |
|
0).transpose(1, 0, 2) |
|
|
|
frames.append(frame) |
|
|
|
if real_imgs is not None: |
|
resize_imgs = convert_img(real_imgs, h)[:nframes, ...] |
|
|
|
for i in range(len(frames)): |
|
imgs = np.vstack(resize_imgs[i, ...]) |
|
imgs4 = np.ones( |
|
(imgs.shape[0], imgs.shape[1], 4), dtype=np.uint8) * 255 |
|
imgs4[:, :, :3] = imgs |
|
|
|
frames[i] = np.concatenate((imgs4, frames[i]), 1) |
|
return np.stack(frames) |
|
|
|
|
|
def stack_images_gen(gen, real_imgs=None): |
|
print("Stacking frames..") |
|
allframes = gen |
|
nframes, nspa, nats, h, w, pix = allframes.shape |
|
blackborder = np.zeros((w * nspa, h // 30, pix), dtype=allframes.dtype) |
|
blackborder = blackborder[None, ...].repeat(nats, |
|
axis=0).transpose(0, 2, 1, 3) |
|
|
|
frames = [] |
|
for frame_idx in tqdm(range(nframes)): |
|
rows = np.vstack(allframes[frame_idx].transpose(0, 3, 2, 4, |
|
1)).transpose( |
|
3, 1, 0, 2) |
|
rows = np.concatenate((rows, blackborder), 1) |
|
frame = np.concatenate(rows, 0) |
|
frames.append(frame) |
|
|
|
if real_imgs is not None: |
|
|
|
resize_imgs = convert_img(real_imgs, h)[:nframes, ...] |
|
for i in range(len(frames)): |
|
imgs = np.vstack(resize_imgs[i, ...]) |
|
|
|
frames[i] = np.concatenate((imgs, frames[i]), 1) |
|
return np.stack(frames) |
|
|
|
|
|
def generate_by_video(visualization, reconstructions, generation, |
|
label_to_action_name, params, nats, nspa, tmp_path): |
|
|
|
|
|
fps = params["fps"] |
|
|
|
params = params.copy() |
|
|
|
gen_only = False |
|
if visualization is None: |
|
gen_only = True |
|
outputkey = "output_vertices" |
|
params["pose_rep"] = "vertices" |
|
elif "output_vertices" in visualization: |
|
outputkey = "output_vertices" |
|
params["pose_rep"] = "vertices" |
|
elif "output_xyz" in visualization: |
|
outputkey = "output_xyz" |
|
params["pose_rep"] = "xyz" |
|
else: |
|
outputkey = "poses" |
|
|
|
keep = [outputkey, 'lengths', "y"] |
|
gener = {key: generation[key].data.cpu().numpy() for key in keep} |
|
if not gen_only: |
|
visu = {key: visualization[key].data.cpu().numpy() for key in keep} |
|
recons = {} |
|
|
|
if 'vertices_hat' in reconstructions['ntf']: |
|
recons['regressor'] = { |
|
'output_vertices': |
|
reconstructions['ntf']['vertices_hat'].data.cpu().numpy(), |
|
'lengths': |
|
reconstructions['ntf']['lengths'].data.cpu().numpy(), |
|
'y': |
|
reconstructions['ntf']['y'].data.cpu().numpy() |
|
} |
|
|
|
recons['regressor_side'] = { |
|
'output_vertices': |
|
reconstructions['ntf']['vertices_hat'].data.cpu().numpy(), |
|
'lengths': |
|
reconstructions['ntf']['lengths'].data.cpu().numpy(), |
|
'y': |
|
reconstructions['ntf']['y'].data.cpu().numpy(), |
|
'side': |
|
True |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for mode, reconstruction in reconstructions.items(): |
|
recons[mode] = { |
|
key: reconstruction[key].data.cpu().numpy() |
|
for key in keep |
|
} |
|
recons[mode + '_side'] = { |
|
key: reconstruction[key].data.cpu().numpy() |
|
for key in keep |
|
} |
|
recons[mode + '_side']['side'] = True |
|
|
|
|
|
|
|
lenmax = gener['lengths'].max() |
|
timesize = lenmax |
|
|
|
import multiprocessing |
|
|
|
def pool_job_with_desc(pool, iterator, desc, max_, save_path_format, isij): |
|
with tqdm(total=max_, desc=desc.format("Render")) as pbar: |
|
for data in iterator: |
|
plot_3d_motion_dico(data) |
|
|
|
|
|
if isij: |
|
array = np.stack([[ |
|
load_anim(save_path_format.format(i, j), timesize) |
|
for j in range(nats) |
|
] for i in tqdm(range(nspa), desc=desc.format("Load"))]) |
|
return array.transpose(2, 0, 1, 3, 4, 5) |
|
else: |
|
array = np.stack([ |
|
load_anim(save_path_format.format(i), timesize) |
|
for i in tqdm(range(nats), desc=desc.format("Load")) |
|
]) |
|
return array.transpose(1, 0, 2, 3, 4) |
|
|
|
pool = None |
|
|
|
with multiprocessing.Pool() as pool: |
|
|
|
save_path_format = os.path.join(tmp_path, "gen_{}_{}.gif") |
|
iterator = ((gener[outputkey][i, j], gener['lengths'][i, j], |
|
save_path_format.format(i, j), params, { |
|
"title": |
|
f"gen: {label_to_action_name(gener['y'][i, j])}", |
|
"interval": 1000 / fps |
|
}) for j in range(nats) for i in range(nspa)) |
|
gener["frames"] = pool_job_with_desc(pool, iterator, |
|
"{} the generated samples", |
|
nats * nspa, save_path_format, |
|
True) |
|
if not gen_only: |
|
|
|
save_path_format = os.path.join(tmp_path, "real_{}.gif") |
|
iterator = ((visu[outputkey][i], visu['lengths'][i], |
|
save_path_format.format(i), params, { |
|
"title": |
|
f"real: {label_to_action_name(visu['y'][i])}", |
|
"interval": 1000 / fps |
|
}) for i in range(nats)) |
|
visu["frames"] = pool_job_with_desc(pool, iterator, |
|
"{} the real samples", nats, |
|
save_path_format, False) |
|
for mode, recon in recons.items(): |
|
|
|
save_path_format = os.path.join( |
|
tmp_path, f"reconstructed_{mode}_" + "{}.gif") |
|
if mode == 'overlap': |
|
iterator = (( |
|
recon[outputkey][i], recon['lengths'][i], |
|
save_path_format.format(i), params, { |
|
"title": |
|
f"recons: {label_to_action_name(recon['y'][i])}", |
|
"interval": 1000 / fps, |
|
"pred_cam": recon['cam'][i], |
|
"imgs": recon['imgs'][i], |
|
"bbox": recon['bbox'][i] |
|
}) for i in range(nats)) |
|
else: |
|
side = True if 'side' in recon.keys() else False |
|
iterator = (( |
|
recon[outputkey][i], recon['lengths'][i], |
|
save_path_format.format(i), params, { |
|
"title": |
|
f"recons: {label_to_action_name(recon['y'][i])}", |
|
"interval": 1000 / fps, |
|
"side": side |
|
}) for i in range(nats)) |
|
recon["frames"] = pool_job_with_desc( |
|
pool, iterator, "{} the reconstructed samples", nats, |
|
save_path_format, False) |
|
|
|
if not gen_only: |
|
input_imgs = visualization["imgs"] if visualization[ |
|
"imgs"] is not None else None |
|
vis = visu["frames"] if not gen_only else None |
|
rec = [recon["frames"] |
|
for recon in recons.values()] if not gen_only else None |
|
gen = gener["frames"] |
|
frames = stack_images(vis, rec, gen, input_imgs) |
|
else: |
|
gen = gener["frames"] |
|
frames = stack_images_gen(gen) |
|
return frames |
|
|
|
|
|
def viz_epoch(model, |
|
dataset, |
|
epoch, |
|
params, |
|
folder, |
|
module=None, |
|
writer=None, |
|
exps=''): |
|
""" Generate & viz samples """ |
|
module = model if module is None else module |
|
|
|
|
|
model.outputxyz = True |
|
|
|
print(f"Visualization of the epoch {epoch}") |
|
|
|
noise_same_action = params["noise_same_action"] |
|
noise_diff_action = params["noise_diff_action"] |
|
duration_mode = params["duration_mode"] |
|
reconstruction_mode = params["reconstruction_mode"] |
|
decoder_test = params["decoder_test"] |
|
|
|
fact = params["fact_latent"] |
|
figname = params["figname"].format(epoch) |
|
|
|
nspa = params["num_samples_per_action"] |
|
nats = params["num_actions_to_sample"] |
|
|
|
num_classes = params["num_classes"] |
|
|
|
|
|
|
|
classes = torch.randperm(num_classes)[:nats] |
|
|
|
if nats > num_classes: |
|
classes = classes.expand(nats) |
|
|
|
meandurations = torch.from_numpy( |
|
np.array([ |
|
round(dataset.get_mean_length_label(cl.item())) for cl in classes |
|
])) |
|
|
|
if duration_mode == "interpolate" or decoder_test == "diffduration": |
|
points, step = np.linspace(-nspa, nspa, nspa, retstep=True) |
|
|
|
points = np.array([5, 10, 16, 30, 60, 80]).astype(int) |
|
|
|
gendurations = torch.from_numpy(points[:, None]).expand( |
|
(nspa, 1)).repeat((1, nats)) |
|
else: |
|
gendurations = meandurations.repeat((nspa, 1)) |
|
print("Duration time: ") |
|
print(gendurations[:, 0]) |
|
|
|
|
|
|
|
batch = dataset.get_label_sample_batch(classes.numpy()) |
|
|
|
|
|
|
|
|
|
visualization = { |
|
"x": batch['x'].to(model.device), |
|
"y": classes.to(model.device), |
|
"mask": batch['mask'].to(model.device), |
|
'lengths': batch['lengths'].to(model.device), |
|
"output": batch['x'].to(model.device), |
|
"theta": |
|
batch['theta'].to(model.device) if 'theta' in batch.keys() else None, |
|
"imgs": |
|
batch['imgs'].to(model.device) if 'imgs' in batch.keys() else None, |
|
"paths": batch['paths'] if 'paths' in batch.keys() else None, |
|
} |
|
|
|
|
|
if reconstruction_mode == "both": |
|
reconstructions = { |
|
"tf": { |
|
"x": |
|
batch['x'].to(model.device), |
|
"y": |
|
classes.to(model.device), |
|
'lengths': |
|
batch['lengths'].to(model.device), |
|
"mask": |
|
batch['mask'].to(model.device), |
|
"teacher_force": |
|
True, |
|
"theta": |
|
batch['theta'].to(model.device) |
|
if 'theta' in batch.keys() else None |
|
}, |
|
"ntf": { |
|
"x": |
|
batch['x'].to(model.device), |
|
"y": |
|
classes.to(model.device), |
|
'lengths': |
|
batch['lengths'].to(model.device), |
|
"mask": |
|
batch['mask'].to(model.device), |
|
"theta": |
|
batch['theta'].to(model.device) |
|
if 'theta' in batch.keys() else None |
|
} |
|
} |
|
else: |
|
reconstructions = { |
|
reconstruction_mode: { |
|
"x": |
|
batch['x'].to(model.device), |
|
"y": |
|
classes.to(model.device), |
|
'lengths': |
|
batch['lengths'].to(model.device), |
|
"mask": |
|
batch['mask'].to(model.device), |
|
"teacher_force": |
|
reconstruction_mode == "tf", |
|
"imgs": |
|
batch['imgs'].to(model.device) |
|
if 'imgs' in batch.keys() else None, |
|
"theta": |
|
batch['theta'].to(model.device) |
|
if 'theta' in batch.keys() else None, |
|
"bbox": |
|
batch['bbox'] if 'bbox' in batch.keys() else None |
|
} |
|
} |
|
print("Computing the samples poses..") |
|
|
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
|
|
for mode in reconstructions: |
|
|
|
reconstructions[mode] = model(reconstructions[mode]) |
|
reconstruction = reconstructions[list(reconstructions.keys())[0]] |
|
|
|
if decoder_test == "gt": |
|
|
|
gt_input = { |
|
"x": batch['x'].repeat(nspa, 1, 1, 1).to(model.device), |
|
"y": classes.repeat(nspa).to(model.device), |
|
"mask": batch['mask'].repeat(nspa, 1).to(model.device), |
|
'lengths': batch['lengths'].repeat(nspa).to(model.device) |
|
} |
|
generation = model(gt_input) |
|
if decoder_test == "new": |
|
|
|
generation = module.generate(gendurations, |
|
classes=classes, |
|
nspa=nspa, |
|
noise_same_action=noise_same_action, |
|
noise_diff_action=noise_diff_action, |
|
fact=fact) |
|
elif decoder_test == "diffaction": |
|
assert nats == nspa |
|
|
|
z = reconstruction["z"].repeat((nspa, 1)) |
|
mask = reconstruction["mask"].repeat((nspa, 1)) |
|
lengths = reconstruction['lengths'].repeat(nspa) |
|
|
|
y = classes.repeat_interleave(nspa).to(model.device) |
|
generation = {"z": z, "y": y, "mask": mask, 'lengths': lengths} |
|
model.decoder(generation) |
|
|
|
elif decoder_test == "diffduration": |
|
z = reconstruction["z"].repeat((nspa, 1)) |
|
lengths = gendurations.reshape(-1).to(model.device) |
|
mask = model.lengths_to_mask(lengths) |
|
y = classes.repeat(nspa).to(model.device) |
|
generation = {"z": z, "y": y, "mask": mask, 'lengths': lengths} |
|
model.decoder(generation) |
|
|
|
elif decoder_test == "interpolate_action": |
|
assert nats == nspa |
|
|
|
z_diff_action = torch.randn(1, |
|
model.latent_dim, |
|
device=model.device).repeat(nats, 1) |
|
z = z_diff_action.repeat((nspa, 1)) |
|
|
|
|
|
y = F.one_hot(classes.to(model.device), |
|
model.num_classes).to(model.device) |
|
y_below = F.one_hot(torch.cat((classes[1:], classes[0:1])), |
|
model.num_classes).to(model.device) |
|
convex_factors = torch.linspace(0, 1, nspa, device=model.device) |
|
y_mixed = torch.einsum("nk,m->mnk", y, 1-convex_factors) + \ |
|
torch.einsum("nk,m->mnk", y_below, convex_factors) |
|
y_mixed = y_mixed.reshape(nspa * nats, y_mixed.shape[-1]) |
|
|
|
durations = gendurations[0].to(model.device) |
|
durations_below = torch.cat((durations[1:], durations[0:1])) |
|
|
|
gendurations = torch.einsum("l,k->kl", durations, 1-convex_factors) + \ |
|
torch.einsum("l,k->kl", durations_below, convex_factors) |
|
gendurations = gendurations.to(dtype=durations.dtype) |
|
|
|
lengths = gendurations.to(model.device).reshape(z.shape[0]) |
|
mask = model.lengths_to_mask(lengths) |
|
|
|
generation = { |
|
"z": z, |
|
"y": y_mixed, |
|
"mask": mask, |
|
'lengths': lengths |
|
} |
|
generation = model.decoder(generation) |
|
|
|
visualization = module.prepare(visualization) |
|
visualization["output_xyz"] = visualization["x_xyz"] |
|
visualization["output_vertices"] = visualization["x_vertices"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
for key, val in generation.items(): |
|
if len(generation[key].shape) == 1: |
|
generation[key] = val.reshape(nspa, nats) |
|
else: |
|
generation[key] = val.reshape(nspa, nats, *val.shape[1:]) |
|
|
|
finalpath = os.path.join(folder, figname + exps + ".gif") |
|
tmp_path = os.path.join(folder, f"subfigures_{figname}") |
|
os.makedirs(tmp_path, exist_ok=True) |
|
|
|
print("Generate the videos..") |
|
frames = generate_by_video(visualization, reconstructions, generation, |
|
dataset.label_to_action_name, params, nats, |
|
nspa, tmp_path) |
|
|
|
print(f"Writing video {finalpath}") |
|
imageio.mimsave(finalpath.replace('gif', 'mp4'), frames, fps=params["fps"]) |
|
shutil.rmtree(tmp_path) |
|
|
|
|
|
output = { |
|
"data_id": batch['id'], |
|
"paths": batch['paths'], |
|
"x": batch['x'].cpu().numpy(), |
|
"x_vertices": visualization["x_vertices"].cpu().numpy(), |
|
"output_vertices": |
|
reconstructions['ntf']["output_vertices"].cpu().numpy(), |
|
"gen_vertices": generation["output_vertices"].cpu().numpy() |
|
} |
|
|
|
outputpath = finalpath.replace('gif', 'npy') |
|
np.save(outputpath, output) |
|
|
|
|
|
batch_recon = reconstructions["ntf"] |
|
outputpath = finalpath.replace('gif', 'pkl') |
|
|
|
|
|
if writer is not None: |
|
writer.add_video(f"Video/Epoch {epoch}", |
|
frames.transpose(0, 3, 1, 2)[None], |
|
epoch, |
|
fps=params["fps"]) |
|
return finalpath |
|
|
|
|
|
def viz_dataset(dataset, params, folder): |
|
""" Generate & viz samples """ |
|
print("Visualization of the dataset") |
|
|
|
nspa = params["num_samples_per_action"] |
|
nats = params["num_actions_to_sample"] |
|
|
|
num_classes = params["num_classes"] |
|
|
|
figname = "{}_{}_numframes_{}_sampling_{}_step_{}".format( |
|
params["dataset"], params["pose_rep"], params["num_frames"], |
|
params["sampling"], params["sampling_step"]) |
|
|
|
|
|
classes = torch.randperm(num_classes)[:nats] |
|
|
|
allclasses = classes.repeat(nspa, 1).reshape(nspa * nats) |
|
|
|
real_samples, mask_real, real_lengths = dataset.get_label_sample_batch( |
|
allclasses.numpy()) |
|
|
|
|
|
|
|
visualization = { |
|
"x": real_samples, |
|
"y": allclasses, |
|
"mask": mask_real, |
|
'lengths': real_lengths, |
|
"output": real_samples |
|
} |
|
|
|
from mGPT.models.rotation2xyz import Rotation2xyz |
|
|
|
device = params["device"] |
|
rot2xyz = Rotation2xyz(device=device) |
|
|
|
rot2xyz_params = { |
|
"pose_rep": params["pose_rep"], |
|
"glob_rot": params["glob_rot"], |
|
"glob": params["glob"], |
|
"jointstype": params["jointstype"], |
|
"translation": params["translation"] |
|
} |
|
|
|
output = visualization["output"] |
|
visualization["output_xyz"] = rot2xyz(output.to(device), |
|
visualization["mask"].to(device), |
|
**rot2xyz_params) |
|
|
|
for key, val in visualization.items(): |
|
if len(visualization[key].shape) == 1: |
|
visualization[key] = val.reshape(nspa, nats) |
|
else: |
|
visualization[key] = val.reshape(nspa, nats, *val.shape[1:]) |
|
|
|
finalpath = os.path.join(folder, figname + ".gif") |
|
tmp_path = os.path.join(folder, f"subfigures_{figname}") |
|
os.makedirs(tmp_path, exist_ok=True) |
|
|
|
print("Generate the videos..") |
|
frames = generate_by_video_sequences(visualization, |
|
dataset.label_to_action_name, params, |
|
nats, nspa, tmp_path) |
|
|
|
print(f"Writing video {finalpath}..") |
|
imageio.mimsave(finalpath, frames, fps=params["fps"]) |
|
|
|
|
|
def generate_by_video_sequences(visualization, label_to_action_name, params, |
|
nats, nspa, tmp_path): |
|
|
|
|
|
fps = params["fps"] |
|
if "output_vetices" in visualization: |
|
outputkey = "output_vetices" |
|
params["pose_rep"] = "vertices" |
|
elif "output_xyz" in visualization: |
|
outputkey = "output_xyz" |
|
params["pose_rep"] = "xyz" |
|
else: |
|
outputkey = "poses" |
|
|
|
keep = [outputkey, 'lengths', "y"] |
|
visu = {key: visualization[key].data.cpu().numpy() for key in keep} |
|
lenmax = visu['lengths'].max() |
|
|
|
timesize = lenmax + 5 |
|
|
|
|
|
|
|
def pool_job_with_desc(pool, iterator, desc, max_, save_path_format): |
|
for data in iterator: |
|
plot_3d_motion_dico(data) |
|
|
|
|
|
|
|
array = np.stack([[ |
|
load_anim(save_path_format.format(i, j), timesize) |
|
for j in range(nats) |
|
] for i in tqdm(range(nspa), desc=desc.format("Load"))]) |
|
return array.transpose(2, 0, 1, 3, 4, 5) |
|
|
|
pool = None |
|
|
|
|
|
save_path_format = os.path.join(tmp_path, "real_{}_{}.gif") |
|
iterator = ((visu[outputkey][i, j], visu['lengths'][i, j], |
|
save_path_format.format(i, j), params, { |
|
"title": f"real: {label_to_action_name(visu['y'][i, j])}", |
|
"interval": 1000 / fps |
|
}) for j in range(nats) for i in range(nspa)) |
|
visu["frames"] = pool_job_with_desc(pool, iterator, "{} the real samples", |
|
nats, save_path_format) |
|
frames = stack_images_sequence(visu["frames"]) |
|
return frames |
|
|
|
|
|
def stack_images_sequence(visu): |
|
print("Stacking frames..") |
|
allframes = visu |
|
nframes, nspa, nats, h, w, pix = allframes.shape |
|
frames = [] |
|
for frame_idx in tqdm(range(nframes)): |
|
columns = np.vstack(allframes[frame_idx].transpose(1, 2, 3, 4, |
|
0)).transpose( |
|
3, 1, 0, 2) |
|
frame = np.concatenate(columns).transpose(1, 0, 2) |
|
frames.append(frame) |
|
return np.stack(frames) |
|
|