|
import random |
|
import numpy as np |
|
from torch.utils import data |
|
from .dataset_t2m import Text2MotionDataset |
|
import codecs as cs |
|
from os.path import join as pjoin |
|
|
|
|
|
class Text2MotionDatasetM2T(data.Dataset): |
|
|
|
def __init__( |
|
self, |
|
data_root, |
|
split, |
|
mean, |
|
std, |
|
max_motion_length=196, |
|
min_motion_length=40, |
|
unit_length=4, |
|
fps=20, |
|
tmpFile=True, |
|
tiny=False, |
|
debug=False, |
|
**kwargs, |
|
): |
|
|
|
self.max_motion_length = max_motion_length |
|
self.min_motion_length = min_motion_length |
|
self.unit_length = unit_length |
|
|
|
|
|
self.mean = mean |
|
self.std = std |
|
|
|
|
|
split_file = pjoin(data_root, split + '.txt') |
|
motion_dir = pjoin(data_root, 'new_joint_vecs') |
|
text_dir = pjoin(data_root, 'texts') |
|
|
|
|
|
self.id_list = [] |
|
with cs.open(split_file, "r") as f: |
|
for line in f.readlines(): |
|
self.id_list.append(line.strip()) |
|
|
|
new_name_list = [] |
|
length_list = [] |
|
data_dict = {} |
|
for name in self.id_list: |
|
|
|
motion = np.load(pjoin(motion_dir, name + '.npy')) |
|
if (len(motion)) < self.min_motion_length or (len(motion) >= 200): |
|
continue |
|
|
|
|
|
text_data = [] |
|
flag = False |
|
|
|
with cs.open(pjoin(text_dir, name + '.txt')) as f: |
|
for line in f.readlines(): |
|
text_dict = {} |
|
line_split = line.strip().split('#') |
|
caption = line_split[0] |
|
tokens = line_split[1].split(' ') |
|
f_tag = float(line_split[2]) |
|
to_tag = float(line_split[3]) |
|
f_tag = 0.0 if np.isnan(f_tag) else f_tag |
|
to_tag = 0.0 if np.isnan(to_tag) else to_tag |
|
|
|
text_dict['caption'] = caption |
|
text_dict['tokens'] = tokens |
|
if f_tag == 0.0 and to_tag == 0.0: |
|
flag = True |
|
text_data.append(text_dict) |
|
else: |
|
try: |
|
n_motion = motion[int(f_tag*20) : int(to_tag*20)] |
|
|
|
if (len(n_motion)) < min_motion_length or (len(n_motion) >= 200): |
|
continue |
|
|
|
new_name = "%s_%f_%f"%(name, f_tag, to_tag) |
|
data_dict[new_name] = {'motion': n_motion, |
|
'length': len(n_motion), |
|
'text':[text_dict]} |
|
new_name_list.append(new_name) |
|
except: |
|
print(line_split) |
|
print(line_split[2], line_split[3], f_tag, to_tag, name) |
|
if flag: |
|
data_dict[name] = {'motion': motion, |
|
'length': len(motion), |
|
'name': name, |
|
'text': text_data} |
|
|
|
new_name_list.append(name) |
|
length_list.append(len(motion)) |
|
|
|
|
|
|
|
|
|
self.length_arr = np.array(length_list) |
|
self.data_dict = data_dict |
|
self.name_list = new_name_list |
|
self.nfeats = motion.shape[-1] |
|
|
|
|
|
def __len__(self): |
|
return len(self.data_dict) |
|
|
|
def __getitem__(self, item): |
|
name = self.name_list[item] |
|
data = self.data_dict[name] |
|
motion, m_length = data['motion'], data['length'] |
|
|
|
"Z Normalization" |
|
motion = (motion - self.mean) / self.std |
|
|
|
return name, motion, m_length, True, True, True, True, True, True |
|
|