|
import torch |
|
import rich |
|
import pickle |
|
import numpy as np |
|
|
|
|
|
def lengths_to_mask(lengths): |
|
max_len = max(lengths) |
|
mask = torch.arange(max_len, device=lengths.device).expand( |
|
len(lengths), max_len) < lengths.unsqueeze(1) |
|
return mask |
|
|
|
|
|
|
|
def collate_tensors(batch): |
|
if isinstance(batch[0], np.ndarray): |
|
batch = [torch.tensor(b).float() for b in batch] |
|
|
|
dims = batch[0].dim() |
|
max_size = [max([b.size(i) for b in batch]) for i in range(dims)] |
|
size = (len(batch), ) + tuple(max_size) |
|
canvas = batch[0].new_zeros(size=size) |
|
for i, b in enumerate(batch): |
|
sub_tensor = canvas[i] |
|
for d in range(dims): |
|
sub_tensor = sub_tensor.narrow(d, 0, b.size(d)) |
|
sub_tensor.add_(b) |
|
return canvas |
|
|
|
def humanml3d_collate(batch): |
|
notnone_batches = [b for b in batch if b is not None] |
|
EvalFlag = False if notnone_batches[0][5] is None else True |
|
|
|
|
|
if EvalFlag: |
|
notnone_batches.sort(key=lambda x: x[5], reverse=True) |
|
|
|
|
|
adapted_batch = { |
|
"motion": |
|
collate_tensors([torch.tensor(b[1]).float() for b in notnone_batches]), |
|
"length": [b[2] for b in notnone_batches], |
|
} |
|
|
|
|
|
if notnone_batches[0][0] is not None: |
|
adapted_batch.update({ |
|
"text": [b[0] for b in notnone_batches], |
|
"all_captions": [b[7] for b in notnone_batches], |
|
}) |
|
|
|
|
|
if EvalFlag: |
|
adapted_batch.update({ |
|
"text": [b[0] for b in notnone_batches], |
|
"word_embs": |
|
collate_tensors( |
|
[torch.tensor(b[3]).float() for b in notnone_batches]), |
|
"pos_ohot": |
|
collate_tensors( |
|
[torch.tensor(b[4]).float() for b in notnone_batches]), |
|
"text_len": |
|
collate_tensors([torch.tensor(b[5]) for b in notnone_batches]), |
|
"tokens": [b[6] for b in notnone_batches], |
|
}) |
|
|
|
|
|
if len(notnone_batches[0]) == 9: |
|
adapted_batch.update({"tasks": [b[8] for b in notnone_batches]}) |
|
|
|
return adapted_batch |
|
|
|
|
|
def load_pkl(path, description=None, progressBar=False): |
|
if progressBar: |
|
with rich.progress.open(path, 'rb', description=description) as file: |
|
data = pickle.load(file) |
|
else: |
|
with open(path, 'rb') as file: |
|
data = pickle.load(file) |
|
return data |
|
|