# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: [email protected] | |
import torch | |
import torch.nn.functional as F | |
from mGPT.utils.joints import mmm_joints | |
# Get the indexes of particular body part SMPLH case | |
# Feet | |
# LM, RM = smplh_joints.index("left_ankle"), smplh_joints.index("right_ankle") | |
# LF, RF = smplh_joints.index("left_foot"), smplh_joints.index("right_foot") | |
# # Shoulders | |
# LS, RS = smplh_joints.index("left_shoulder"), smplh_joints.index("right_shoulder") | |
# # Hips | |
# LH, RH = smplh_joints.index("left_hip"), smplh_joints.index("right_hip") | |
# Get the indexes of particular body part | |
# Feet | |
LM, RM = mmm_joints.index("LMrot"), mmm_joints.index("RMrot") | |
LF, RF = mmm_joints.index("LF"), mmm_joints.index("RF") | |
# Shoulders | |
LS, RS = mmm_joints.index("LS"), mmm_joints.index("RS") | |
# Hips | |
LH, RH = mmm_joints.index("LH"), mmm_joints.index("RH") | |
def get_forward_direction(poses, jointstype="mmm"): | |
# assert jointstype == 'mmm' | |
across = poses[..., RH, :] - poses[..., LH, :] + poses[..., RS, :] - poses[ | |
..., LS, :] | |
forward = torch.stack((-across[..., 2], across[..., 0]), axis=-1) | |
forward = torch.nn.functional.normalize(forward, dim=-1) | |
return forward | |
def get_floor(poses, jointstype="mmm"): | |
# assert jointstype == 'mmm' | |
ndim = len(poses.shape) | |
foot_heights = poses[..., (LM, LF, RM, RF), 1].min(-1).values | |
floor_height = softmin(foot_heights, softness=0.5, dim=-1) | |
# changed this thing Mathis version 1.11 pytorch | |
return floor_height[(ndim - 2) * [None]].transpose(0, -1) | |
def softmax(x, softness=1.0, dim=None): | |
maxi, mini = x.max(dim=dim).values, x.min(dim=dim).values | |
return maxi + torch.log(softness + torch.exp(mini - maxi)) | |
def softmin(x, softness=1.0, dim=0): | |
return -softmax(-x, softness=softness, dim=dim) | |
def gaussian_filter1d(_inputs, sigma, truncate=4.0): | |
# Code adapted/mixed from scipy library into pytorch | |
# https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/ndimage/filters.py#L211 | |
# and gaussian kernel | |
# https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/ndimage/filters.py#L179 | |
# Correspond to mode="nearest" and order = 0 | |
# But works batched | |
if len(_inputs.shape) == 2: | |
inputs = _inputs[None] | |
else: | |
inputs = _inputs | |
sd = float(sigma) | |
radius = int(truncate * sd + 0.5) | |
sigma2 = sigma * sigma | |
x = torch.arange(-radius, | |
radius + 1, | |
device=inputs.device, | |
dtype=inputs.dtype) | |
phi_x = torch.exp(-0.5 / sigma2 * x**2) | |
phi_x = phi_x / phi_x.sum() | |
# Conv1d weights | |
groups = inputs.shape[-1] | |
weights = torch.tile(phi_x, (groups, 1, 1)) | |
inputs = inputs.transpose(-1, -2) | |
outputs = F.conv1d(inputs, weights, padding="same", | |
groups=groups).transpose(-1, -2) | |
return outputs.reshape(_inputs.shape) | |