|
|
|
""" |
|
DETR Transformer class. |
|
Copy-paste from torch.nn.Transformer with modifications: |
|
* positional encodings are passed in MHattention |
|
* extra LN at the end of encoder is removed |
|
* decoder returns a stack of activations from all decoding layers |
|
""" |
|
import copy |
|
from typing import List, Optional |
|
from numpy import block |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor, nn |
|
|
|
|
|
class SkipTransformerEncoder(nn.Module): |
|
def __init__(self, encoder_layer, num_layers, norm=None): |
|
super().__init__() |
|
self.d_model = encoder_layer.d_model |
|
|
|
self.num_layers = num_layers |
|
self.norm = norm |
|
|
|
assert num_layers % 2 == 1 |
|
|
|
num_block = (num_layers-1)//2 |
|
self.input_blocks = _get_clones(encoder_layer, num_block) |
|
self.middle_block = _get_clone(encoder_layer) |
|
self.output_blocks = _get_clones(encoder_layer, num_block) |
|
self.linear_blocks = _get_clones(nn.Linear(2*self.d_model, self.d_model), num_block) |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
def forward(self, src, |
|
mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None): |
|
x = src |
|
|
|
xs = [] |
|
for module in self.input_blocks: |
|
x = module(x, src_mask=mask, |
|
src_key_padding_mask=src_key_padding_mask, pos=pos) |
|
xs.append(x) |
|
|
|
x = self.middle_block(x, src_mask=mask, |
|
src_key_padding_mask=src_key_padding_mask, pos=pos) |
|
|
|
for (module, linear) in zip(self.output_blocks, self.linear_blocks): |
|
x = torch.cat([x, xs.pop()], dim=-1) |
|
x = linear(x) |
|
x = module(x, src_mask=mask, |
|
src_key_padding_mask=src_key_padding_mask, pos=pos) |
|
|
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
class SkipTransformerDecoder(nn.Module): |
|
def __init__(self, decoder_layer, num_layers, norm=None): |
|
super().__init__() |
|
self.d_model = decoder_layer.d_model |
|
|
|
self.num_layers = num_layers |
|
self.norm = norm |
|
|
|
assert num_layers % 2 == 1 |
|
|
|
num_block = (num_layers-1)//2 |
|
self.input_blocks = _get_clones(decoder_layer, num_block) |
|
self.middle_block = _get_clone(decoder_layer) |
|
self.output_blocks = _get_clones(decoder_layer, num_block) |
|
self.linear_blocks = _get_clones(nn.Linear(2*self.d_model, self.d_model), num_block) |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
def forward(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
x = tgt |
|
|
|
xs = [] |
|
for module in self.input_blocks: |
|
x = module(x, memory, tgt_mask=tgt_mask, |
|
memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
pos=pos, query_pos=query_pos) |
|
xs.append(x) |
|
|
|
x = self.middle_block(x, memory, tgt_mask=tgt_mask, |
|
memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
pos=pos, query_pos=query_pos) |
|
|
|
for (module, linear) in zip(self.output_blocks, self.linear_blocks): |
|
x = torch.cat([x, xs.pop()], dim=-1) |
|
x = linear(x) |
|
x = module(x, memory, tgt_mask=tgt_mask, |
|
memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
pos=pos, query_pos=query_pos) |
|
|
|
if self.norm is not None: |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
class Transformer(nn.Module): |
|
|
|
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, |
|
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, |
|
activation="relu", normalize_before=False, |
|
return_intermediate_dec=False): |
|
super().__init__() |
|
|
|
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, |
|
dropout, activation, normalize_before) |
|
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None |
|
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) |
|
|
|
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, |
|
dropout, activation, normalize_before) |
|
decoder_norm = nn.LayerNorm(d_model) |
|
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, |
|
return_intermediate=return_intermediate_dec) |
|
|
|
self._reset_parameters() |
|
|
|
self.d_model = d_model |
|
self.nhead = nhead |
|
|
|
def _reset_parameters(self): |
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_uniform_(p) |
|
|
|
def forward(self, src, mask, query_embed, pos_embed): |
|
|
|
bs, c, h, w = src.shape |
|
src = src.flatten(2).permute(2, 0, 1) |
|
pos_embed = pos_embed.flatten(2).permute(2, 0, 1) |
|
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) |
|
mask = mask.flatten(1) |
|
|
|
tgt = torch.zeros_like(query_embed) |
|
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) |
|
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, |
|
pos=pos_embed, query_pos=query_embed) |
|
return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w) |
|
|
|
|
|
class TransformerEncoder(nn.Module): |
|
|
|
def __init__(self, encoder_layer, num_layers, norm=None): |
|
super().__init__() |
|
self.layers = _get_clones(encoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = norm |
|
|
|
def forward(self, src, |
|
mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None): |
|
output = src |
|
|
|
for layer in self.layers: |
|
output = layer(output, src_mask=mask, |
|
src_key_padding_mask=src_key_padding_mask, pos=pos) |
|
|
|
if self.norm is not None: |
|
output = self.norm(output) |
|
|
|
return output |
|
|
|
|
|
class TransformerDecoder(nn.Module): |
|
|
|
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): |
|
super().__init__() |
|
self.layers = _get_clones(decoder_layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = norm |
|
self.return_intermediate = return_intermediate |
|
|
|
def forward(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
output = tgt |
|
|
|
intermediate = [] |
|
|
|
for layer in self.layers: |
|
output = layer(output, memory, tgt_mask=tgt_mask, |
|
memory_mask=memory_mask, |
|
tgt_key_padding_mask=tgt_key_padding_mask, |
|
memory_key_padding_mask=memory_key_padding_mask, |
|
pos=pos, query_pos=query_pos) |
|
if self.return_intermediate: |
|
intermediate.append(self.norm(output)) |
|
|
|
if self.norm is not None: |
|
output = self.norm(output) |
|
if self.return_intermediate: |
|
intermediate.pop() |
|
intermediate.append(output) |
|
|
|
if self.return_intermediate: |
|
return torch.stack(intermediate) |
|
|
|
return output.unsqueeze(0) |
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, |
|
activation="relu", normalize_before=False): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
self.normalize_before = normalize_before |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, |
|
src, |
|
src_mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None): |
|
q = k = self.with_pos_embed(src, pos) |
|
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, |
|
key_padding_mask=src_key_padding_mask)[0] |
|
src = src + self.dropout1(src2) |
|
src = self.norm1(src) |
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) |
|
src = src + self.dropout2(src2) |
|
src = self.norm2(src) |
|
return src |
|
|
|
def forward_pre(self, src, |
|
src_mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None): |
|
src2 = self.norm1(src) |
|
q = k = self.with_pos_embed(src2, pos) |
|
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, |
|
key_padding_mask=src_key_padding_mask)[0] |
|
src = src + self.dropout1(src2) |
|
src2 = self.norm2(src) |
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) |
|
src = src + self.dropout2(src2) |
|
return src |
|
|
|
def forward(self, src, |
|
src_mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None): |
|
if self.normalize_before: |
|
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) |
|
return self.forward_post(src, src_mask, src_key_padding_mask, pos) |
|
|
|
|
|
class TransformerDecoderLayer(nn.Module): |
|
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, |
|
activation="relu", normalize_before=False): |
|
super().__init__() |
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
|
|
self.d_model = d_model |
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
self.normalize_before = normalize_before |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward_post(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
|
|
q = k = self.with_pos_embed(tgt, query_pos) |
|
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask)[0] |
|
tgt = tgt + self.dropout1(tgt2) |
|
tgt = self.norm1(tgt) |
|
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask)[0] |
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt = self.norm2(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
tgt = self.norm3(tgt) |
|
return tgt |
|
|
|
def forward_pre(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
tgt2 = self.norm1(tgt) |
|
q = k = self.with_pos_embed(tgt2, query_pos) |
|
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask)[0] |
|
tgt = tgt + self.dropout1(tgt2) |
|
tgt2 = self.norm2(tgt) |
|
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), |
|
key=self.with_pos_embed(memory, pos), |
|
value=memory, attn_mask=memory_mask, |
|
key_padding_mask=memory_key_padding_mask)[0] |
|
tgt = tgt + self.dropout2(tgt2) |
|
tgt2 = self.norm3(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
return tgt |
|
|
|
def forward(self, tgt, memory, |
|
tgt_mask: Optional[Tensor] = None, |
|
memory_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
memory_key_padding_mask: Optional[Tensor] = None, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
if self.normalize_before: |
|
return self.forward_pre(tgt, memory, tgt_mask, memory_mask, |
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) |
|
return self.forward_post(tgt, memory, tgt_mask, memory_mask, |
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) |
|
|
|
|
|
def _get_clone(module): |
|
return copy.deepcopy(module) |
|
|
|
def _get_clones(module, N): |
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) |
|
|
|
|
|
def build_transformer(args): |
|
return Transformer( |
|
d_model=args.hidden_dim, |
|
dropout=args.dropout, |
|
nhead=args.nheads, |
|
dim_feedforward=args.dim_feedforward, |
|
num_encoder_layers=args.enc_layers, |
|
num_decoder_layers=args.dec_layers, |
|
normalize_before=args.pre_norm, |
|
return_intermediate_dec=True, |
|
) |
|
|
|
|
|
def _get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "relu": |
|
return F.relu |
|
if activation == "gelu": |
|
return F.gelu |
|
if activation == "glu": |
|
return F.glu |
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |