|
import os |
|
import numpy as np |
|
import torch |
|
import logging |
|
from pathlib import Path |
|
from pytorch_lightning import LightningModule |
|
from os.path import join as pjoin |
|
from collections import OrderedDict |
|
from mGPT.metrics import BaseMetrics |
|
from mGPT.config import get_obj_from_str |
|
|
|
|
|
class BaseModel(LightningModule): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self.test_step_outputs = [] |
|
self.times = [] |
|
self.rep_i = 0 |
|
|
|
def training_step(self, batch, batch_idx): |
|
return self.allsplit_step("train", batch, batch_idx) |
|
|
|
def validation_step(self, batch, batch_idx): |
|
return self.allsplit_step("val", batch, batch_idx) |
|
|
|
def test_step(self, batch, batch_idx): |
|
outputs = self.allsplit_step("test", batch, batch_idx) |
|
self.test_step_outputs.append(outputs) |
|
return outputs |
|
|
|
def predict_step(self, batch, batch_idx): |
|
return self.forward(batch) |
|
|
|
def on_train_epoch_end(self): |
|
|
|
dico = self.step_log_dict() |
|
|
|
dico.update(self.loss_log_dict('train')) |
|
|
|
if not self.trainer.sanity_checking: |
|
self.log_dict(dico, sync_dist=True, rank_zero_only=True) |
|
|
|
def on_validation_epoch_end(self): |
|
|
|
dico = self.step_log_dict() |
|
|
|
dico.update(self.loss_log_dict('train')) |
|
dico.update(self.loss_log_dict('val')) |
|
|
|
dico.update(self.metrics_log_dict()) |
|
|
|
if not self.trainer.sanity_checking: |
|
self.log_dict(dico, sync_dist=True, rank_zero_only=True) |
|
|
|
def on_test_epoch_end(self): |
|
|
|
dico = self.metrics_log_dict() |
|
|
|
if not self.trainer.sanity_checking: |
|
self.log_dict(dico, sync_dist=True, rank_zero_only=True) |
|
self.save_npy(self.test_step_outputs) |
|
self.rep_i = self.rep_i + 1 |
|
|
|
self.test_step_outputs.clear() |
|
|
|
def preprocess_state_dict(self, state_dict): |
|
new_state_dict = OrderedDict() |
|
|
|
|
|
loss_state_dict = self._losses.state_dict() |
|
|
|
|
|
|
|
|
|
for k, v in loss_state_dict.items(): |
|
new_state_dict['_losses.' + k] = v |
|
|
|
for k, v in state_dict.items(): |
|
if '_losses' not in k and 'Metrics' not in k: |
|
new_state_dict[k] = v |
|
|
|
return new_state_dict |
|
|
|
def load_state_dict(self, state_dict, strict=True): |
|
new_state_dict = self.preprocess_state_dict(state_dict) |
|
super().load_state_dict(new_state_dict, strict) |
|
|
|
def step_log_dict(self): |
|
return { |
|
"epoch": float(self.trainer.current_epoch), |
|
"step": float(self.trainer.current_epoch) |
|
} |
|
|
|
def loss_log_dict(self, split: str): |
|
losses = self._losses['losses_' + split] |
|
loss_dict = losses.compute(split) |
|
return loss_dict |
|
|
|
def metrics_log_dict(self): |
|
|
|
|
|
if self.trainer.datamodule.is_mm and "TM2TMetrics" in self.hparams.metrics_dict: |
|
metrics_dicts = ['MMMetrics'] |
|
else: |
|
metrics_dicts = self.hparams.metrics_dict |
|
|
|
|
|
metrics_log_dict = {} |
|
for metric in metrics_dicts: |
|
metrics_dict = getattr( |
|
self.metrics, |
|
metric).compute(sanity_flag=self.trainer.sanity_checking) |
|
metrics_log_dict.update({ |
|
f"Metrics/{metric}": value.item() |
|
for metric, value in metrics_dict.items() |
|
}) |
|
|
|
return metrics_log_dict |
|
|
|
def configure_optimizers(self): |
|
|
|
optim_target = self.hparams.cfg.TRAIN.OPTIM.target |
|
if len(optim_target.split('.')) == 1: |
|
optim_target = 'torch.optim.' + optim_target |
|
optimizer = get_obj_from_str(optim_target)( |
|
params=self.parameters(), **self.hparams.cfg.TRAIN.OPTIM.params) |
|
|
|
|
|
scheduler_target = self.hparams.cfg.TRAIN.LR_SCHEDULER.target |
|
if len(scheduler_target.split('.')) == 1: |
|
scheduler_target = 'torch.optim.lr_scheduler.' + scheduler_target |
|
lr_scheduler = get_obj_from_str(scheduler_target)( |
|
optimizer=optimizer, **self.hparams.cfg.TRAIN.LR_SCHEDULER.params) |
|
|
|
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler} |
|
|
|
def configure_metrics(self): |
|
self.metrics = BaseMetrics(datamodule=self.datamodule, **self.hparams) |
|
|
|
def save_npy(self, outputs): |
|
cfg = self.hparams.cfg |
|
output_dir = Path( |
|
os.path.join( |
|
cfg.FOLDER, |
|
str(cfg.model.target.split('.')[-2].lower()), |
|
str(cfg.NAME), |
|
"samples_" + cfg.TIME, |
|
)) |
|
if cfg.TEST.SAVE_PREDICTIONS: |
|
lengths = [i[1] for i in outputs] |
|
outputs = [i[0] for i in outputs] |
|
|
|
if cfg.TEST.DATASETS[0].lower() in ["humanml3d", "kit"]: |
|
keyids = self.trainer.datamodule.test_dataset.name_list |
|
for i in range(len(outputs)): |
|
for bid in range( |
|
min(cfg.TEST.BATCH_SIZE, outputs[i].shape[0])): |
|
keyid = keyids[i * cfg.TEST.BATCH_SIZE + bid] |
|
data = self.trainer.datamodule.test_dataset.data_dict[ |
|
keyid] |
|
|
|
motion = torch.tensor(data['motion'], |
|
device=outputs[i].device) |
|
motion = self.datamodule.normalize(motion) |
|
length = data['length'] |
|
text_list = data['text'] |
|
gen_joints = outputs[i][bid][:lengths[i][bid]].cpu( |
|
).numpy() |
|
if cfg.TEST.REPLICATION_TIMES > 1: |
|
name = f"{keyid}.npy" |
|
else: |
|
name = f"{keyid}.npy" |
|
|
|
npypath = output_dir / name |
|
np.save(npypath, gen_joints) |
|
npypath = output_dir / f"{keyid}_gt.npy" |
|
joints = self.feats2joints(motion).cpu().numpy() |
|
np.save(npypath, joints) |
|
|
|
with open(output_dir / f"{keyid}.txt", "a") as f: |
|
for text in text_list: |
|
f.write(f"{text['caption']}\n") |
|
|
|
elif cfg.TEST.DATASETS[0].lower() in ["humanact12", "uestc"]: |
|
keyids = range(len(self.trainer.datamodule.test_dataset)) |
|
for i in range(len(outputs)): |
|
for bid in range( |
|
min(cfg.TEST.BATCH_SIZE, outputs[i].shape[0])): |
|
keyid = keyids[i * cfg.TEST.BATCH_SIZE + bid] |
|
gen_joints = outputs[i][bid].cpu() |
|
gen_joints = gen_joints.permute(2, 0, |
|
1)[:lengths[i][bid], |
|
...].numpy() |
|
if cfg.TEST.REPLICATION_TIMES > 1: |
|
name = f"{keyid}_{self.rep_i}" |
|
else: |
|
name = f"{keyid}.npy" |
|
|
|
npypath = output_dir / name |
|
np.save(npypath, gen_joints) |
|
|