|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from torch.nn import functional as F |
|
|
|
|
|
def axis_angle_to_quaternion(axis_angle): |
|
""" |
|
Convert rotations given as axis/angle to quaternions. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
quaternions with real part first, as tensor of shape (..., 4). |
|
""" |
|
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) |
|
half_angles = 0.5 * angles |
|
eps = 1e-6 |
|
small_angles = angles.abs() < eps |
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
sin_half_angles_over_angles[~small_angles] = ( |
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles]) |
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48) |
|
quaternions = torch.cat( |
|
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], |
|
dim=-1) |
|
return quaternions |
|
|
|
|
|
def quaternion_to_matrix(quaternions): |
|
""" |
|
Convert rotations given as quaternions to rotation matrices. |
|
|
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
o = torch.stack( |
|
( |
|
1 - two_s * (j * j + k * k), |
|
two_s * (i * j - k * r), |
|
two_s * (i * k + j * r), |
|
two_s * (i * j + k * r), |
|
1 - two_s * (i * i + k * k), |
|
two_s * (j * k - i * r), |
|
two_s * (i * k - j * r), |
|
two_s * (j * k + i * r), |
|
1 - two_s * (i * i + j * j), |
|
), |
|
-1, |
|
) |
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
def axis_angle_to_matrix(axis_angle): |
|
""" |
|
Convert rotations given as axis/angle to rotation matrices. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) |
|
|
|
|
|
def matrix_of_angles(cos, sin, inv=False, dim=2): |
|
assert dim in [2, 3] |
|
sin = -sin if inv else sin |
|
if dim == 2: |
|
row1 = torch.stack((cos, -sin), axis=-1) |
|
row2 = torch.stack((sin, cos), axis=-1) |
|
return torch.stack((row1, row2), axis=-2) |
|
elif dim == 3: |
|
row1 = torch.stack((cos, -sin, 0 * cos), axis=-1) |
|
row2 = torch.stack((sin, cos, 0 * cos), axis=-1) |
|
row3 = torch.stack((0 * sin, 0 * cos, 1 + 0 * cos), axis=-1) |
|
return torch.stack((row1, row2, row3), axis=-2) |
|
|
|
|
|
def matrot2axisangle(matrots): |
|
|
|
|
|
''' |
|
:param matrots: N*num_joints*9 |
|
:return: N*num_joints*3 |
|
''' |
|
import cv2 |
|
batch_size = matrots.shape[0] |
|
matrots = matrots.reshape([batch_size, -1, 9]) |
|
out_axisangle = [] |
|
for mIdx in range(matrots.shape[0]): |
|
cur_axisangle = [] |
|
for jIdx in range(matrots.shape[1]): |
|
a = cv2.Rodrigues(matrots[mIdx, |
|
jIdx:jIdx + 1, :].reshape(3, |
|
3))[0].reshape( |
|
(1, 3)) |
|
cur_axisangle.append(a) |
|
|
|
out_axisangle.append(np.array(cur_axisangle).reshape([1, -1, 3])) |
|
return np.vstack(out_axisangle) |
|
|
|
|
|
def axisangle2matrots(axisangle): |
|
|
|
|
|
''' |
|
:param axisangle: N*num_joints*3 |
|
:return: N*num_joints*9 |
|
''' |
|
import cv2 |
|
batch_size = axisangle.shape[0] |
|
axisangle = axisangle.reshape([batch_size, -1, 3]) |
|
out_matrot = [] |
|
for mIdx in range(axisangle.shape[0]): |
|
cur_axisangle = [] |
|
for jIdx in range(axisangle.shape[1]): |
|
a = cv2.Rodrigues(axisangle[mIdx, jIdx:jIdx + 1, :].reshape(1, |
|
3))[0] |
|
cur_axisangle.append(a) |
|
|
|
out_matrot.append(np.array(cur_axisangle).reshape([1, -1, 9])) |
|
return np.vstack(out_matrot) |
|
|
|
|
|
def batch_rodrigues(axisang): |
|
|
|
|
|
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) |
|
angle = torch.unsqueeze(axisang_norm, -1) |
|
axisang_normalized = torch.div(axisang, angle) |
|
angle = angle * 0.5 |
|
v_cos = torch.cos(angle) |
|
v_sin = torch.sin(angle) |
|
|
|
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) |
|
rot_mat = quat2mat(quat) |
|
rot_mat = rot_mat.view(rot_mat.shape[0], 9) |
|
return rot_mat |
|
|
|
|
|
def quat2mat(quat): |
|
""" |
|
This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50 |
|
|
|
Convert quaternion coefficients to rotation matrix. |
|
Args: |
|
quat: size = [batch_size, 4] 4 <===>(w, x, y, z) |
|
Returns: |
|
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] |
|
""" |
|
norm_quat = quat |
|
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) |
|
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, |
|
2], norm_quat[:, |
|
3] |
|
|
|
batch_size = quat.size(0) |
|
|
|
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) |
|
wx, wy, wz = w * x, w * y, w * z |
|
xy, xz, yz = x * y, x * z, y * z |
|
|
|
rotMat = torch.stack([ |
|
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, |
|
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, |
|
w2 - x2 - y2 + z2 |
|
], |
|
dim=1).view(batch_size, 3, 3) |
|
return rotMat |
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to Rodrigues vector |
|
|
|
Args: |
|
rotation_matrix (Tensor): rotation matrix. |
|
|
|
Returns: |
|
Tensor: Rodrigues vector transformation. |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 3)` |
|
|
|
Example: |
|
>>> input = torch.rand(2, 3, 4) # Nx4x4 |
|
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 |
|
""" |
|
if rotation_matrix.shape[1:] == (3, 3): |
|
rot_mat = rotation_matrix.reshape(-1, 3, 3) |
|
hom = torch.tensor([0, 0, 1], |
|
dtype=torch.float32, |
|
device=rotation_matrix.device).reshape( |
|
1, 3, 1).expand(rot_mat.shape[0], -1, -1) |
|
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) |
|
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
aa = quaternion_to_angle_axis(quaternion) |
|
aa[torch.isnan(aa)] = 0.0 |
|
return aa |
|
|
|
|
|
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert quaternion vector to angle axis of rotation. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
quaternion (torch.Tensor): tensor with quaternions. |
|
|
|
Return: |
|
torch.Tensor: tensor with angle axis of rotation. |
|
|
|
Shape: |
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 3)` |
|
|
|
Example: |
|
>>> quaternion = torch.rand(2, 4) # Nx4 |
|
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 |
|
""" |
|
if not torch.is_tensor(quaternion): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(quaternion))) |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError( |
|
"Input must be a tensor of shape Nx4 or 4. Got {}".format( |
|
quaternion.shape)) |
|
|
|
q1: torch.Tensor = quaternion[..., 1] |
|
q2: torch.Tensor = quaternion[..., 2] |
|
q3: torch.Tensor = quaternion[..., 3] |
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
cos_theta: torch.Tensor = quaternion[..., 0] |
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), |
|
torch.atan2(sin_theta, cos_theta)) |
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) |
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] |
|
angle_axis[..., 0] += q1 * k |
|
angle_axis[..., 1] += q2 * k |
|
angle_axis[..., 2] += q3 * k |
|
return angle_axis |
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to 4d quaternion vector |
|
|
|
This algorithm is based on algorithm described in |
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
|
Args: |
|
rotation_matrix (Tensor): the rotation matrix to convert. |
|
|
|
Return: |
|
Tensor: the rotation in quaternion |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(4, 3, 4) # Nx3x4 |
|
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 |
|
""" |
|
if not torch.is_tensor(rotation_matrix): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(rotation_matrix))) |
|
|
|
if len(rotation_matrix.shape) > 3: |
|
raise ValueError( |
|
"Input size must be a three dimensional tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
if not rotation_matrix.shape[-2:] == (3, 4): |
|
raise ValueError( |
|
"Input size must be a N x 3 x 4 tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
|
|
rmat_t = torch.transpose(rotation_matrix, 1, 2) |
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q0 = torch.stack([ |
|
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, |
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] |
|
], -1) |
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q1 = torch.stack([ |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] |
|
], -1) |
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q2 = torch.stack([ |
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 |
|
], -1) |
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q3 = torch.stack([ |
|
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] |
|
], -1) |
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
mask_c0 = mask_d2 * mask_d0_d1 |
|
mask_c1 = mask_d2 * ~mask_d0_d1 |
|
mask_c2 = ~mask_d2 * mask_d0_nd1 |
|
mask_c3 = ~mask_d2 * ~mask_d0_nd1 |
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + |
|
t2_rep * mask_c2 + t3_rep * mask_c3) |
|
q *= 0.5 |
|
return q |
|
|
|
|
|
def estimate_translation_np(S, |
|
joints_2d, |
|
joints_conf, |
|
focal_length=5000., |
|
img_size=224.): |
|
""" |
|
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py |
|
|
|
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. |
|
Input: |
|
S: (25, 3) 3D joint locations |
|
joints: (25, 3) 2D joint locations and confidence |
|
Returns: |
|
(3,) camera translation vector |
|
""" |
|
|
|
num_joints = S.shape[0] |
|
|
|
f = np.array([focal_length, focal_length]) |
|
|
|
center = np.array([img_size / 2., img_size / 2.]) |
|
|
|
|
|
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1) |
|
XY = np.reshape(S[:, 0:2], -1) |
|
O = np.tile(center, num_joints) |
|
F = np.tile(f, num_joints) |
|
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1) |
|
|
|
|
|
Q = np.array([ |
|
F * np.tile(np.array([1, 0]), num_joints), |
|
F * np.tile(np.array([0, 1]), num_joints), |
|
O - np.reshape(joints_2d, -1) |
|
]).T |
|
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY |
|
|
|
|
|
W = np.diagflat(weight2) |
|
Q = np.dot(W, Q) |
|
c = np.dot(W, c) |
|
|
|
|
|
A = np.dot(Q.T, Q) |
|
b = np.dot(Q.T, c) |
|
|
|
|
|
trans = np.linalg.solve(A, b) |
|
|
|
return trans |
|
|
|
|
|
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): |
|
""" |
|
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py |
|
|
|
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. |
|
Input: |
|
S: (B, 49, 3) 3D joint locations |
|
joints: (B, 49, 3) 2D joint locations and confidence |
|
Returns: |
|
(B, 3) camera translation vectors |
|
""" |
|
|
|
device = S.device |
|
|
|
S = S[:, 25:, :].cpu().numpy() |
|
joints_2d = joints_2d[:, 25:, :].cpu().numpy() |
|
joints_conf = joints_2d[:, :, -1] |
|
joints_2d = joints_2d[:, :, :-1] |
|
trans = np.zeros((S.shape[0], 3), dtype=np.float6432) |
|
|
|
for i in range(S.shape[0]): |
|
S_i = S[i] |
|
joints_i = joints_2d[i] |
|
conf_i = joints_conf[i] |
|
trans[i] = estimate_translation_np(S_i, |
|
joints_i, |
|
conf_i, |
|
focal_length=focal_length, |
|
img_size=img_size) |
|
return torch.from_numpy(trans).to(device) |
|
|
|
|
|
def rot6d_to_rotmat_spin(x): |
|
"""Convert 6D rotation representation to 3x3 rotation matrix. |
|
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 |
|
Input: |
|
(B,6) Batch of 6-D rotation representations |
|
Output: |
|
(B,3,3) Batch of corresponding rotation matrices |
|
""" |
|
x = x.view(-1, 3, 2) |
|
a1 = x[:, :, 0] |
|
a2 = x[:, :, 1] |
|
b1 = F.normalize(a1) |
|
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) |
|
|
|
|
|
|
|
|
|
|
|
b3 = torch.cross(b1, b2) |
|
return torch.stack((b1, b2, b3), dim=-1) |
|
|
|
|
|
def rot6d_to_rotmat(x): |
|
x = x.view(-1, 3, 2) |
|
|
|
|
|
b1 = F.normalize(x[:, :, 0], dim=1, eps=1e-6) |
|
|
|
dot_prod = torch.sum(b1 * x[:, :, 1], dim=1, keepdim=True) |
|
|
|
b2 = F.normalize(x[:, :, 1] - dot_prod * b1, dim=-1, eps=1e-6) |
|
|
|
|
|
b3 = torch.cross(b1, b2, dim=1) |
|
rot_mats = torch.stack([b1, b2, b3], dim=-1) |
|
|
|
return rot_mats |
|
|
|
|
|
import mGPT.utils.rotation_conversions as rotation_conversions |
|
|
|
|
|
def rot6d(x_rotations, pose_rep): |
|
time, njoints, feats = x_rotations.shape |
|
|
|
|
|
if pose_rep == "rotvec": |
|
rotations = rotation_conversions.axis_angle_to_matrix(x_rotations) |
|
elif pose_rep == "rotmat": |
|
rotations = x_rotations.view(njoints, 3, 3) |
|
elif pose_rep == "rotquat": |
|
rotations = rotation_conversions.quaternion_to_matrix(x_rotations) |
|
elif pose_rep == "rot6d": |
|
rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations) |
|
else: |
|
raise NotImplementedError("No geometry for this one.") |
|
|
|
rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations) |
|
return rotations_6d |
|
|
|
|
|
def rot6d_batch(x_rotations, pose_rep): |
|
nsamples, time, njoints, feats = x_rotations.shape |
|
|
|
|
|
if pose_rep == "rotvec": |
|
rotations = rotation_conversions.axis_angle_to_matrix(x_rotations) |
|
elif pose_rep == "rotmat": |
|
rotations = x_rotations.view(-1, njoints, 3, 3) |
|
elif pose_rep == "rotquat": |
|
rotations = rotation_conversions.quaternion_to_matrix(x_rotations) |
|
elif pose_rep == "rot6d": |
|
rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations) |
|
else: |
|
raise NotImplementedError("No geometry for this one.") |
|
|
|
rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations) |
|
return rotations_6d |
|
|
|
|
|
def rot6d_to_rotvec_batch(pose): |
|
|
|
bs, nfeats = pose.shape |
|
rot6d = pose.reshape(bs, 24, 6) |
|
rotations = rotation_conversions.rotation_6d_to_matrix(rot6d) |
|
rotvec = rotation_conversions.matrix_to_axis_angle(rotations) |
|
return rotvec.reshape(bs, 24 * 3) |
|
|