|
import os |
|
|
|
os.environ['PYOPENGL_PLATFORM'] = 'egl' |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
|
|
import matplotlib.pyplot as plt |
|
import glob |
|
import pickle |
|
import pyrender |
|
import trimesh |
|
from shapely import geometry |
|
from smplx import SMPL as _SMPL |
|
from smplx.utils import SMPLOutput as ModelOutput |
|
from scipy.spatial.transform.rotation import Rotation as RRR |
|
|
|
|
|
class SMPL(_SMPL): |
|
""" Extension of the official SMPL implementation to support more joints """ |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(SMPL, self).__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, *args, **kwargs): |
|
kwargs['get_skin'] = True |
|
smpl_output = super(SMPL, self).forward(*args, **kwargs) |
|
|
|
|
|
|
|
joints = smpl_output.joints |
|
output = ModelOutput(vertices=smpl_output.vertices, |
|
global_orient=smpl_output.global_orient, |
|
body_pose=smpl_output.body_pose, |
|
joints=joints, |
|
betas=smpl_output.betas, |
|
full_pose=smpl_output.full_pose) |
|
return output |
|
|
|
|
|
class Renderer: |
|
""" |
|
Renderer used for visualizing the SMPL model |
|
Code adapted from https://github.com/vchoutas/smplify-x |
|
""" |
|
|
|
def __init__(self, |
|
vertices, |
|
focal_length=5000, |
|
img_res=(224, 224), |
|
faces=None): |
|
self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0], |
|
viewport_height=img_res[1], |
|
point_size=1.0) |
|
self.focal_length = focal_length |
|
self.camera_center = [img_res[0] // 2, img_res[1] // 2] |
|
self.faces = faces |
|
|
|
if torch.cuda.is_available(): |
|
self.device = torch.device("cuda") |
|
else: |
|
self.device = torch.device("cpu") |
|
|
|
vertices = np.concatenate(vertices) |
|
|
|
vertices -= vertices[[0], [0], :] |
|
|
|
vertices[..., 2] -= vertices[..., 2].min() |
|
data = vertices[..., [2, 0, 1]] |
|
minx, miny, _ = data.min(axis=(0, 1)) |
|
maxx, maxy, _ = data.max(axis=(0, 1)) |
|
minz, maxz = -0.5, 0.5 |
|
minx = minx - 0.5 |
|
maxx = maxx + 0.5 |
|
miny = miny - 0.5 |
|
maxy = maxy + 0.5 |
|
|
|
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], |
|
[maxx, minz]]) |
|
self.polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5) |
|
self.polygon_mesh.visual.face_colors = [0, 0, 0, 0.21] |
|
self.rot = trimesh.transformations.rotation_matrix( |
|
np.radians(180), [1, 0, 0]) |
|
|
|
|
|
def __call__(self, vertices, camera_translation): |
|
scene = pyrender.Scene(bg_color=(1., 1., 1., 0.8), |
|
ambient_light=(0.4, 0.4, 0.4)) |
|
|
|
material = pyrender.MetallicRoughnessMaterial( |
|
metallicFactor=0.4, |
|
alphaMode='OPAQUE', |
|
baseColorFactor=(0.658, 0.214, 0.0114, 0.2)) |
|
mesh = trimesh.Trimesh(vertices, self.faces) |
|
mesh.apply_transform(self.rot) |
|
mesh = pyrender.Mesh.from_trimesh(mesh, material=material) |
|
scene.add(mesh, 'mesh') |
|
|
|
polygon_render = pyrender.Mesh.from_trimesh(self.polygon_mesh, |
|
smooth=False) |
|
c = np.pi / 2 |
|
scene.add(polygon_render) |
|
|
|
camera_pose = np.eye(4) |
|
camera_translation[0] *= -1. |
|
camera_pose[:3, 3] = camera_translation |
|
camera = pyrender.IntrinsicsCamera(fx=self.focal_length, |
|
fy=self.focal_length, |
|
cx=self.camera_center[0], |
|
cy=self.camera_center[1]) |
|
scene.add(camera, pose=camera_pose) |
|
|
|
light = pyrender.DirectionalLight(color=[1, 1, 1], intensity=300) |
|
light_pose = np.eye(4) |
|
|
|
light_pose[:3, 3] = np.array([0, -1, 1]) |
|
scene.add(light, pose=light_pose) |
|
|
|
light_pose[:3, 3] = np.array([0, 1, 1]) |
|
scene.add(light, pose=light_pose) |
|
|
|
light_pose[:3, 3] = np.array([1, 1, 2]) |
|
scene.add(light, pose=light_pose) |
|
|
|
color, rend_depth = self.renderer.render( |
|
scene, flags=pyrender.RenderFlags.RGBA) |
|
|
|
return color |
|
|
|
|
|
class SMPLRender(): |
|
|
|
def __init__(self, SMPL_MODEL_DIR): |
|
if torch.cuda.is_available(): |
|
self.device = torch.device("cuda") |
|
else: |
|
self.device = torch.device("cpu") |
|
self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, |
|
create_transl=False).to(self.device) |
|
self.vertices = [] |
|
self.pred_camera_t = [] |
|
self.focal_length = 5000 |
|
|
|
def fit(self, smpl_param, is_headroot=False): |
|
pose = smpl_param['pred_pose'] |
|
if pose.size == 72: |
|
pose = pose.reshape(-1, 3) |
|
pose = RRR.from_rotvec(pose).as_matrix() |
|
pose = pose.reshape(1, 24, 3, 3) |
|
pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape( |
|
1, 10).astype(np.float32)).to(self.device) |
|
pred_rotmat = torch.from_numpy(pose.astype(np.float32)).to(self.device) |
|
pred_camera_t = smpl_param['pred_root'].reshape(1, |
|
3).astype(np.float32) |
|
smpl_output = self.smpl(betas=pred_betas, |
|
body_pose=pred_rotmat[:, 1:], |
|
global_orient=pred_rotmat[:, 0].unsqueeze(1), |
|
pose2rot=False) |
|
vertices = smpl_output.vertices[0].detach().cpu().numpy() |
|
self.vertices.append(vertices[None]) |
|
|
|
pred_camera_t = pred_camera_t[0] |
|
|
|
if is_headroot: |
|
pred_camera_t = pred_camera_t - smpl_output.joints[ |
|
0, 12].detach().cpu().numpy() |
|
|
|
self.pred_camera_t.append(pred_camera_t) |
|
|
|
def init_renderer(self, res): |
|
self.renderer = Renderer(vertices=self.vertices, |
|
focal_length=self.focal_length, |
|
img_res=(res[1], res[0]), |
|
faces=self.smpl.faces) |
|
|
|
def render(self, index): |
|
renderImg = self.renderer(self.vertices[index][0], |
|
self.pred_camera_t[index].copy()) |
|
return renderImg |
|
|