|
import numpy as np |
|
import torch |
|
from os.path import join as pjoin |
|
from .humanml.utils.word_vectorizer import WordVectorizer |
|
from .humanml.scripts.motion_process import (process_file, recover_from_ric) |
|
from .HumanML3D import HumanML3DDataModule |
|
from .humanml import Text2MotionDatasetEval, Text2MotionDataset, Text2MotionDatasetCB, MotionDataset, MotionDatasetVQ, Text2MotionDatasetToken |
|
|
|
|
|
class KitDataModule(HumanML3DDataModule): |
|
def __init__(self, cfg, **kwargs): |
|
|
|
super().__init__(cfg, **kwargs) |
|
|
|
|
|
self.name = "kit" |
|
self.njoints = 21 |
|
|
|
|
|
data_root = cfg.DATASET.KIT.ROOT |
|
self.hparams.data_root = data_root |
|
self.hparams.text_dir = pjoin(data_root, "texts") |
|
self.hparams.motion_dir = pjoin(data_root, 'new_joint_vecs') |
|
|
|
|
|
dis_data_root = pjoin(cfg.DATASET.KIT.MEAN_STD_PATH, 'kit', |
|
"VQVAEV3_CB1024_CMT_H1024_NRES3", "meta") |
|
self.hparams.mean = np.load(pjoin(dis_data_root, "mean.npy")) |
|
self.hparams.std = np.load(pjoin(dis_data_root, "std.npy")) |
|
|
|
|
|
dis_data_root_eval = pjoin(cfg.DATASET.KIT.MEAN_STD_PATH, 't2m', |
|
"Comp_v6_KLD005", "meta") |
|
self.hparams.mean_eval = np.load(pjoin(dis_data_root_eval, "mean.npy")) |
|
self.hparams.std_eval = np.load(pjoin(dis_data_root_eval, "std.npy")) |
|
|
|
|
|
self.hparams.max_motion_length = cfg.DATASET.KIT.MAX_MOTION_LEN |
|
self.hparams.min_motion_length = cfg.DATASET.KIT.MIN_MOTION_LEN |
|
self.hparams.max_text_len = cfg.DATASET.KIT.MAX_TEXT_LEN |
|
self.hparams.unit_length = cfg.DATASET.KIT.UNIT_LEN |
|
|
|
|
|
self._sample_set = self.get_sample_set(overrides={"split": "test", "tiny": True}) |
|
self.nfeats = self._sample_set.nfeats |
|
cfg.DATASET.NFEATS = self.nfeats |
|
|
|
def feats2joints(self, features): |
|
mean = torch.tensor(self.hparams.mean).to(features) |
|
std = torch.tensor(self.hparams.std).to(features) |
|
features = features * std + mean |
|
return recover_from_ric(features, self.njoints) |
|
|
|
def joints2feats(self, features): |
|
features = process_file(features, self.njoints)[0] |
|
|
|
|
|
|
|
return features |
|
|
|
def normalize(self, features): |
|
mean = torch.tensor(self.hparams.mean).to(features) |
|
std = torch.tensor(self.hparams.std).to(features) |
|
features = (features - mean) / std |
|
return features |
|
|
|
def renorm4t2m(self, features): |
|
|
|
ori_mean = torch.tensor(self.hparams.mean).to(features) |
|
ori_std = torch.tensor(self.hparams.std).to(features) |
|
eval_mean = torch.tensor(self.hparams.mean_eval).to(features) |
|
eval_std = torch.tensor(self.hparams.std_eval).to(features) |
|
features = features * ori_std + ori_mean |
|
features = (features - eval_mean) / eval_std |
|
return features |
|
|
|
def mm_mode(self, mm_on=True): |
|
|
|
if mm_on: |
|
self.is_mm = True |
|
self.name_list = self.test_dataset.name_list |
|
self.mm_list = np.random.choice(self.name_list, |
|
self.cfg.METRIC.MM_NUM_SAMPLES, |
|
replace=False) |
|
self.test_dataset.name_list = self.mm_list |
|
else: |
|
self.is_mm = False |
|
self.test_dataset.name_list = self.name_list |
|
|