bill-jiang's picture
Init
4409449
raw
history blame
2.51 kB
import numpy as np
from .materials import body_material
# green
# GT_SMPL = body_material(0.009, 0.214, 0.029)
GT_SMPL = body_material(0.035, 0.415, 0.122)
# blue
# GEN_SMPL = body_material(0.022, 0.129, 0.439)
# Blues => cmap(0.87)
# GEN_SMPL = body_material(0.035, 0.322, 0.615)
# Oranges => cmap(0.87)
GEN_SMPL = body_material(0.658, 0.214, 0.0114)
class Meshes:
def __init__(self, data, *, gt, mode, faces_path, canonicalize, always_on_floor, oldrender=True, is_smplx=False, **kwargs):
data = prepare_meshes(data, canonicalize=canonicalize,
always_on_floor=always_on_floor,
is_smplx=is_smplx)
if isinstance(faces_path, str):
self.faces = np.load(faces_path)
else:
self.faces = faces_path
self.data = data
self.mode = mode
self.oldrender = oldrender
self.N = len(data)
self.trajectory = data[:, :, [0, 1]].mean(1)
if gt:
self.mat = GT_SMPL
else:
self.mat = GEN_SMPL
def get_sequence_mat(self, frac):
import matplotlib
# cmap = matplotlib.cm.get_cmap('Blues')
cmap = matplotlib.cm.get_cmap('Oranges')
# begin = 0.60
# end = 0.90
begin = 0.50
end = 0.90
rgbcolor = cmap(begin + (end-begin)*frac)
mat = body_material(*rgbcolor, oldrender=self.oldrender)
return mat
def get_root(self, index):
return self.data[index].mean(0)
def get_mean_root(self):
return self.data.mean((0, 1))
def load_in_blender(self, index, mat):
vertices = self.data[index]
faces = self.faces
name = f"{str(index).zfill(4)}"
from .tools import load_numpy_vertices_into_blender
load_numpy_vertices_into_blender(vertices, faces, name, mat)
return name
def __len__(self):
return self.N
def prepare_meshes(data, canonicalize=True, always_on_floor=False, is_smplx=False):
if canonicalize:
print("No canonicalization for now")
# fitted mesh do not need fixing axis
# fix axis
if is_smplx:
data[..., 1] = - data[..., 1]
# data[..., 0] = - data[..., 0]
# Swap axis (gravity=Z instead of Y)
data = data[..., [2, 0, 1]]
# Remove the floor
data[..., 2] -= data[..., 2].min()
# Put all the body on the floor
if always_on_floor:
data[..., 2] -= data[..., 2].min(1)[:, None]
return data