File size: 7,252 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import rich
import random
import pickle
import os
import numpy as np
import codecs as cs
from torch.utils import data
from os.path import join as pjoin
from rich.progress import track
import json
import spacy
class Text2MotionDatasetCB(data.Dataset):
def __init__(
self,
data_root,
split,
mean,
std,
max_motion_length=196,
min_motion_length=20,
unit_length=4,
fps=20,
tmpFile=True,
tiny=False,
debug=False,
stage='lm_pretrain',
code_path='VQVAE',
task_path=None,
std_text=False,
**kwargs,
):
self.tiny = tiny
self.unit_length = unit_length
# Data mean and std
self.mean = mean
self.std = std
# Data path
split = 'train'
split_file = pjoin(data_root, split + '.txt')
motion_dir = pjoin(data_root, code_path)
text_dir = pjoin(data_root, 'texts')
if task_path:
instructions = task_path
elif stage == 'lm_pretrain':
instructions = pjoin(data_root, 'template_pretrain.json')
elif stage in ['lm_instruct', "lm_rl"]:
instructions = pjoin(data_root, 'template_instructions.json')
else:
raise NotImplementedError(f"stage {stage} not implemented")
# Data id list
self.id_list = []
with cs.open(split_file, "r") as f:
for line in f.readlines():
self.id_list.append(line.strip())
# Debug mode
if tiny or debug:
enumerator = enumerate(self.id_list)
maxdata = 100
subset = '_tiny'
else:
enumerator = enumerate(
track(
self.id_list,
f"Loading HumanML3D {split}",
))
maxdata = 1e10
subset = ''
new_name_list = []
data_dict = {}
# Fast loading
for i, name in enumerator:
if len(new_name_list) > maxdata:
break
try:
# Load motion tokens
m_token_list = np.load(pjoin(motion_dir, f'{name}.npy'))
# Read text
with cs.open(pjoin(text_dir, name + '.txt')) as f:
text_data = []
flag = False
lines = f.readlines()
for line in lines:
try:
text_dict = {}
line_split = line.strip().split('#')
caption = line_split[0]
t_tokens = line_split[1].split(' ')
f_tag = float(line_split[2])
to_tag = float(line_split[3])
f_tag = 0.0 if np.isnan(f_tag) else f_tag
to_tag = 0.0 if np.isnan(to_tag) else to_tag
text_dict['caption'] = caption
text_dict['tokens'] = t_tokens
if f_tag == 0.0 and to_tag == 0.0:
flag = True
text_data.append(text_dict)
else:
m_token_list_new = [
tokens[int(f_tag * fps / unit_length
):int(to_tag * fps /
unit_length)]
for tokens in m_token_list
if int(f_tag * fps / unit_length) <
int(to_tag * fps / unit_length)
]
if len(m_token_list_new) == 0:
continue
new_name = '%s_%f_%f' % (name, f_tag,
to_tag)
data_dict[new_name] = {
'm_token_list': m_token_list_new,
'text': [text_dict]
}
new_name_list.append(new_name)
except:
pass
if flag:
data_dict[name] = {
'm_token_list': m_token_list,
'text': text_data
}
new_name_list.append(name)
except:
pass
if tmpFile:
os.makedirs(pjoin(data_root, 'tmp'), exist_ok=True)
with open(
pjoin(data_root,
f'tmp/{split}{subset}_tokens_data.pkl'),
'wb') as file:
pickle.dump(data_dict, file)
with open(
pjoin(data_root,
f'tmp/{split}{subset}_tokens_index.pkl'),
'wb') as file:
pickle.dump(new_name_list, file)
self.data_dict = data_dict
self.name_list = new_name_list
self.nlp = spacy.load('en_core_web_sm')
self.std_text = std_text
self.instructions = json.load(open(instructions, 'r'))
self.tasks = []
for task in self.instructions.keys():
for subtask in self.instructions[task].keys():
self.tasks.append(self.instructions[task][subtask])
def __len__(self):
return len(self.name_list) * len(self.tasks)
def __getitem__(self, item):
data_idx = item % len(self.name_list)
task_idx = item // len(self.name_list)
data = self.data_dict[self.name_list[data_idx]]
m_token_list, text_list = data['m_token_list'], data['text']
m_tokens = random.choice(m_token_list)
text_data = random.choice(text_list)
caption = text_data['caption']
if self.std_text:
doc = self.nlp(caption)
word_list = []
pos_list = []
for token in doc:
word = token.text
if not word.isalpha():
continue
if (token.pos_ == 'NOUN'
or token.pos_ == 'VERB') and (word != 'left'):
word_list.append(token.lemma_)
else:
word_list.append(word)
pos_list.append(token.pos_)
caption = ' '.join(word_list)
all_captions = [
' '.join([token.split('/')[0] for token in text_dic['tokens']])
for text_dic in text_list
]
coin = np.random.choice([False, False, True])
if coin:
# drop one token at the head or tail
coin2 = np.random.choice([True, False])
if coin2:
m_tokens = m_tokens[:-1]
else:
m_tokens = m_tokens[1:]
m_tokens_len = m_tokens.shape[0]
tasks = self.tasks[task_idx]
return caption, m_tokens, m_tokens_len, None, None, None, None, all_captions, tasks
|