File size: 7,535 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
8554568
4409449
 
 
 
8554568
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8554568
4409449
 
 
 
 
8554568
 
 
 
 
 
4409449
8554568
b625c80
4409449
 
 
 
8554568
 
 
 
4409449
8554568
4409449
b625c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8554568
 
b625c80
 
4409449
8554568
b625c80
8554568
 
 
 
 
b625c80
 
 
 
 
 
 
 
 
 
 
 
 
4409449
 
 
 
 
 
 
 
 
 
 
 
b625c80
 
 
 
8554568
 
 
4409449
 
8554568
4409449
 
 
 
 
8554568
 
b625c80
8554568
b625c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8554568
 
 
 
b625c80
8554568
 
 
 
b625c80
 
8554568
4409449
 
 
8554568
 
 
 
4409449
8554568
 
 
 
4409449
8554568
b625c80
 
4409449
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os

os.environ['PYOPENGL_PLATFORM'] = 'egl'
import torch
import numpy as np
import cv2

import matplotlib.pyplot as plt
import glob
import pickle
import pyrender
import trimesh
from shapely import geometry
from smplx import SMPL as _SMPL
from smplx.utils import SMPLOutput as ModelOutput
from scipy.spatial.transform.rotation import Rotation as RRR


class SMPL(_SMPL):
    """ Extension of the official SMPL implementation to support more joints """

    def __init__(self, *args, **kwargs):
        super(SMPL, self).__init__(*args, **kwargs)
        # joints = [constants.JOINT_MAP[i] for i in constants.JOINT_NAMES]
        # J_regressor_extra = np.load(config.JOINT_REGRESSOR_TRAIN_EXTRA)
        # self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
        # self.joint_map = torch.tensor(joints, dtype=torch.long)

    def forward(self, *args, **kwargs):
        kwargs['get_skin'] = True
        smpl_output = super(SMPL, self).forward(*args, **kwargs)
        # extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)        #Additional 9 joints #Check doc/J_regressor_extra.png
        # joints = torch.cat([smpl_output.joints, extra_joints], dim=1)               #[N, 24 + 21, 3]  + [N, 9, 3]
        # joints = joints[:, self.joint_map, :]
        joints = smpl_output.joints
        output = ModelOutput(vertices=smpl_output.vertices,
                             global_orient=smpl_output.global_orient,
                             body_pose=smpl_output.body_pose,
                             joints=joints,
                             betas=smpl_output.betas,
                             full_pose=smpl_output.full_pose)
        return output


class Renderer:
    """
    Renderer used for visualizing the SMPL model
    Code adapted from https://github.com/vchoutas/smplify-x
    """

    def __init__(self,
                 vertices,
                 focal_length=5000,
                 img_res=(224, 224),
                 faces=None):
        self.renderer = pyrender.OffscreenRenderer(viewport_width=img_res[0],
                                                   viewport_height=img_res[1],
                                                   point_size=2.0)
        self.focal_length = focal_length
        self.camera_center = [img_res[0] // 2, img_res[1] // 2]
        self.faces = faces

        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")

        self.rot = trimesh.transformations.rotation_matrix(
            np.radians(180), [1, 0, 0])

        minx, miny, minz = vertices.min(axis=(0, 1))
        maxx, maxy, maxz = vertices.max(axis=(0, 1))
        minx = minx - 0.5
        maxx = maxx + 0.5
        minz = minz - 0.5
        maxz = maxz + 0.5

        floor = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz],
                                  [maxx, minz]])
        self.floor = trimesh.creation.extrude_polygon(floor, 1e-5)
        self.floor.visual.face_colors = [0, 0, 0, 0.2]
        self.floor.apply_transform(self.rot)
        self.floor_pose = np.array(
            [[1, 0, 0, 0], [0, np.cos(np.pi / 2), -np.sin(np.pi / 2), miny],
             [0, np.sin(np.pi / 2), np.cos(np.pi / 2), 0], [0, 0, 0, 1]])

        c = -np.pi / 6
        self.camera_pose = [[1, 0, 0, (minx + maxx) / 2],
                            [0, np.cos(c), -np.sin(c), 1.5],
                            [
                                0,
                                np.sin(c),
                                np.cos(c),
                                max(4, minz + (1.5 - miny) * 2, (maxx - minx))
                            ], [0, 0, 0, 1]]

    def __call__(self, vertices, camera_translation):

        floor_render = pyrender.Mesh.from_trimesh(self.floor, smooth=False)

        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.1,
            alphaMode='OPAQUE',
            baseColorFactor=(0.658, 0.214, 0.0114, 0.2))
        mesh = trimesh.Trimesh(vertices, self.faces)
        mesh.apply_transform(self.rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0), znear=0.5)

        light = pyrender.DirectionalLight(color=[1, 1, 1], intensity=350)
        spot_l = pyrender.SpotLight(color=np.ones(3),
                                    intensity=300.0,
                                    innerConeAngle=np.pi / 16,
                                    outerConeAngle=np.pi / 6)
        point_l = pyrender.PointLight(color=np.ones(3), intensity=300.0)

        scene = pyrender.Scene(bg_color=(1., 1., 1., 0.8),
                               ambient_light=(0.4, 0.4, 0.4))
        scene.add(floor_render, pose=self.floor_pose)
        scene.add(mesh, 'mesh')

        light_pose = np.eye(4)
        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)

        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        scene.add(camera, pose=self.camera_pose)

        flags = pyrender.RenderFlags.RGBA | pyrender.RenderFlags.SHADOWS_DIRECTIONAL
        color, rend_depth = self.renderer.render(scene, flags=flags)

        return color


class SMPLRender():

    def __init__(self, SMPL_MODEL_DIR):
        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")
        self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=1,
                         create_transl=False).to(self.device)

        self.pred_camera_t = []
        self.focal_length = 110

    def init_renderer(self, res, smpl_param, is_headroot=False):
        poses = smpl_param['pred_pose']
        pred_rotmats = []
        for pose in poses:
            if pose.size == 72:
                pose = pose.reshape(-1, 3)
                pose = RRR.from_rotvec(pose).as_matrix()
                pose = pose.reshape(1, 24, 3, 3)
            pred_rotmats.append(
                torch.from_numpy(pose.astype(np.float32)[None]).to(
                    self.device))

        pred_rotmat = torch.cat(pred_rotmats, dim=0)

        pred_betas = torch.from_numpy(smpl_param['pred_shape'].reshape(
            1, 10).astype(np.float32)).to(self.device)
        pred_camera_t = smpl_param['pred_root'].reshape(1,
                                                        3).astype(np.float32)

        smpl_output = self.smpl(betas=pred_betas,
                                body_pose=pred_rotmat[:, 1:],
                                global_orient=pred_rotmat[:, 0].unsqueeze(1),
                                pose2rot=False)

        self.vertices = smpl_output.vertices.detach().cpu().numpy()

        pred_camera_t = pred_camera_t[0]

        if is_headroot:
            pred_camera_t = pred_camera_t - smpl_output.joints[
                0, 12].detach().cpu().numpy()

        self.pred_camera_t.append(pred_camera_t)

        self.renderer = Renderer(vertices=self.vertices,
                                 focal_length=self.focal_length,
                                 img_res=(res[1], res[0]),
                                 faces=self.smpl.faces)

    def render(self, index):
        renderImg = self.renderer(self.vertices[index, ...],
                                  self.pred_camera_t)
        return renderImg