File size: 12,213 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import math
import bpy
import numpy as np
from mGPT.utils.joints import (humanml3d_joints, humanml3d_kinematic_tree,
mmm_joints, mmm_kinematic_tree,
mmm_to_smplh_scaling_factor)
# from .materials import colored_material_diffuse_BSDF as colored_material
from .materials import colored_material_relection_BSDF as colored_material
sat_factor = 1.1
JOINTS_MATS = [
# colored_material(0.2500, 0.0357, 0.0349, saturation_factor = sat_factor),
# # colored_material(0.4500, 0.0357, 0.0349),
# colored_material(0.6500, 0.175, 0.0043, saturation_factor = sat_factor),
# colored_material(0.0349, 0.3500, 0.0349, saturation_factor = sat_factor),
# colored_material(0.018, 0.059, 0.600, saturation_factor = sat_factor),
# colored_material(0.032, 0.325, 0.421, saturation_factor = sat_factor),
# colored_material(0.3, 0.3, 0.3, saturation_factor = sat_factor),
colored_material(0.3500, 0.0357, 0.0349, saturation_factor=sat_factor),
# colored_material(0.4500, 0.0357, 0.0349),
colored_material(0.6500, 0.175, 0.0043, saturation_factor=sat_factor),
colored_material(0.0349, 0.3500, 0.0349, saturation_factor=sat_factor),
colored_material(0.018, 0.059, 0.600, saturation_factor=sat_factor),
colored_material(0.032, 0.325, 0.421, saturation_factor=sat_factor),
colored_material(0.3, 0.3, 0.3, saturation_factor=sat_factor),
]
class Joints:
def __init__(self,
data,
*,
mode,
canonicalize,
always_on_floor,
jointstype="mmm",
**kwargs):
data = prepare_joints(
data,
canonicalize=canonicalize,
always_on_floor=always_on_floor,
jointstype=jointstype,
)
self.data = data
self.mode = mode
self.N = len(data)
self.N = len(data)
self.trajectory = data[:, 0, [0, 1]]
if jointstype == "mmm":
self.kinematic_tree = mmm_kinematic_tree
self.joints = mmm_joints
self.joinst.append("")
elif jointstype == "humanml3d":
self.kinematic_tree = humanml3d_kinematic_tree
self.joints = humanml3d_joints
self.mat = JOINTS_MATS
def get_sequence_mat(self, frac):
return self.mat
def get_root(self, index):
return self.data[index][0]
def get_mean_root(self):
return self.data[:, 0].mean(0)
def load_in_blender(self, index, mats):
skeleton = self.data[index]
head_mat = mats[0]
body_mat = mats[-1]
for lst, mat in zip(self.kinematic_tree, mats):
for j1, j2 in zip(lst[:-1], lst[1:]):
# spine and head
if self.joints[j2] in [
"BUN",
]:
sphere_between(skeleton[j1], skeleton[j2], head_mat)
elif self.joints[j2] in [
"LE",
"RE",
"LW",
"RW",
]:
cylinder_sphere_between(skeleton[j1], skeleton[j2], 0.040,
mat)
elif self.joints[j2] in [
"LMrot",
"RMrot",
"RK",
"LK",
]:
cylinder_sphere_between(skeleton[j1], skeleton[j2], 0.040,
mat)
elif self.joints[j2] in [
"LS",
"RS",
"LF",
"RF",
]:
cylinder_between(skeleton[j1], skeleton[j2], 0.040, mat)
elif self.joints[j2] in ["RK", "LK"]:
print(self.joints[j1], self.joints[j2])
# body
sphere(0.14, skeleton[self.joints.index("BLN")], body_mat)
sphere_between(
skeleton[self.joints.index("BLN")],
skeleton[self.joints.index("root")],
body_mat,
factor=0.28,
)
sphere(0.11, skeleton[self.joints.index("root")], body_mat)
# sphere_between(
# skeleton[self.joints.index("BLN")],
# skeleton[self.joints.index("BT")],
# mats[0],
# )
# hip
# sphere_between(
# skeleton[self.joints.index("LH")],
# skeleton[self.joints.index("RH")],
# mats[0],
# factor=0.6,
# )
#
# sphere(skeleton[self.joints.index("BLN")], 0.05, mats[0])
# sphere_between(skeleton[13], skeleton[14], mat)
# node
# print(self.joints.index("BUN"))
# print(len(lst))
# sphere(lst[self.joints.index("BUN")], 0.2, mat) # head
return ["Cylinder", "Sphere"]
def __len__(self):
return self.N
def softmax(x, softness=1.0, dim=None):
maxi, mini = x.max(dim), x.min(dim)
return maxi + np.log(softness + np.exp(mini - maxi))
def softmin(x, softness=1.0, dim=0):
return -softmax(-x, softness=softness, dim=dim)
def get_forward_direction(poses, jointstype="mmm"):
if jointstype == "mmm" or jointstype == "mmmns":
joints = mmm_joints
elif jointstype == "humanml3d":
joints = humanml3d_joints
else:
raise TypeError("Only supports mmm, mmmns and humanl3d jointstype")
# Shoulders
LS, RS = joints.index("LS"), joints.index("RS")
# Hips
LH, RH = mmm_joints.index("LH"), mmm_joints.index("RH")
across = (poses[..., RH, :] - poses[..., LH, :] + poses[..., RS, :] -
poses[..., LS, :])
forward = np.stack((-across[..., 2], across[..., 0]), axis=-1)
forward = forward / np.linalg.norm(forward, axis=-1)
return forward
def cylinder_between(t1, t2, r, mat):
x1, y1, z1 = t1
x2, y2, z2 = t2
dx = x2 - x1
dy = y2 - y1
dz = z2 - z1
dist = math.sqrt(dx**2 + dy**2 + dz**2)
bpy.ops.mesh.primitive_cylinder_add(radius=r,
depth=dist,
location=(dx / 2 + x1, dy / 2 + y1,
dz / 2 + z1))
phi = math.atan2(dy, dx)
theta = math.acos(dz / dist)
bpy.context.object.rotation_euler[1] = theta
bpy.context.object.rotation_euler[2] = phi
# bpy.context.object.shade_smooth()
bpy.context.object.active_material = mat
bpy.ops.mesh.primitive_uv_sphere_add(radius=r, location=(x1, y1, z1))
bpy.context.object.active_material = mat
bpy.ops.mesh.primitive_uv_sphere_add(radius=r, location=(x2, y2, z2))
bpy.context.object.active_material = mat
def cylinder_sphere_between(t1, t2, r, mat):
x1, y1, z1 = t1
x2, y2, z2 = t2
dx = x2 - x1
dy = y2 - y1
dz = z2 - z1
dist = math.sqrt(dx**2 + dy**2 + dz**2)
phi = math.atan2(dy, dx)
theta = math.acos(dz / dist)
dist = dist - 0.2 * r
# sphere node
sphere(r * 0.9, t1, mat)
sphere(r * 0.9, t2, mat)
# leveled cylinder
bpy.ops.mesh.primitive_cylinder_add(
radius=r,
depth=dist,
location=(dx / 2 + x1, dy / 2 + y1, dz / 2 + z1),
enter_editmode=True,
)
bpy.ops.mesh.select_mode(type="EDGE")
bpy.ops.mesh.select_all(action="DESELECT")
bpy.ops.mesh.select_face_by_sides(number=32, extend=False)
bpy.ops.mesh.bevel(offset=r, segments=8)
bpy.ops.object.editmode_toggle(False)
# bpy.ops.object.shade_smooth()
bpy.context.object.rotation_euler[1] = theta
bpy.context.object.rotation_euler[2] = phi
bpy.context.object.active_material = mat
def sphere(r, t, mat):
bpy.ops.mesh.primitive_uv_sphere_add(segments=50,
ring_count=50,
radius=r,
location=t)
# bpy.ops.mesh.primitive_uv_sphere_add(radius=r, location=t)
# bpy.context.object.shade_smooth()
bpy.context.object.active_material = mat
def sphere_between(t1, t2, mat, factor=1):
x1, y1, z1 = t1
x2, y2, z2 = t2
dx = x2 - x1
dy = y2 - y1
dz = z2 - z1
dist = math.sqrt(dx**2 + dy**2 + dz**2) * factor
bpy.ops.mesh.primitive_uv_sphere_add(
segments=50,
ring_count=50,
# bpy.ops.mesh.primitive_uv_sphere_add(
radius=dist,
location=(dx / 2 + x1, dy / 2 + y1, dz / 2 + z1))
# bpy.context.object.shade_smooth()
bpy.context.object.active_material = mat
def matrix_of_angles(cos, sin, inv=False):
sin = -sin if inv else sin
return np.stack((np.stack(
(cos, -sin), axis=-1), np.stack((sin, cos), axis=-1)),
axis=-2)
def get_floor(poses, jointstype="mmm"):
if jointstype == "mmm" or jointstype == "mmmns":
joints = mmm_joints
elif jointstype == "humanml3d":
joints = humanml3d_joints
else:
raise TypeError("Only supports mmm, mmmns and humanl3d jointstype")
# Feet
LM, RM = joints.index("LMrot"), joints.index("RMrot")
LF, RF = joints.index("LF"), joints.index("RF")
ndim = len(poses.shape)
foot_heights = poses[..., (LM, LF, RM, RF), 1].min(-1)
floor_height = softmin(foot_heights, softness=0.5, dim=-1)
return floor_height[tuple((ndim - 2) * [None])].T
def canonicalize_joints(joints, jointstype="mmm"):
poses = joints.copy()
translation = joints[..., 0, :].copy()
# Let the root have the Y translation
translation[..., 1] = 0
# Trajectory => Translation without gravity axis (Y)
trajectory = translation[..., [0, 2]]
# Remove the floor
poses[..., 1] -= get_floor(poses, jointstype)
# Remove the trajectory of the joints
poses[..., [0, 2]] -= trajectory[..., None, :]
# Let the first pose be in the center
trajectory = trajectory - trajectory[..., 0, :]
# Compute the forward direction of the first frame
forward = get_forward_direction(poses[..., 0, :, :], jointstype)
# Construct the inverse rotation matrix
sin, cos = forward[..., 0], forward[..., 1]
rotations_inv = matrix_of_angles(cos, sin, inv=True)
# Rotate the trajectory
trajectory_rotated = np.einsum("...j,...jk->...k", trajectory,
rotations_inv)
# Rotate the poses
poses_rotated = np.einsum("...lj,...jk->...lk", poses[..., [0, 2]],
rotations_inv)
poses_rotated = np.stack(
(poses_rotated[..., 0], poses[..., 1], poses_rotated[..., 1]), axis=-1)
# Re-merge the pose and translation
poses_rotated[..., (0, 2)] += trajectory_rotated[..., None, :]
return poses_rotated
def prepare_joints(joints,
canonicalize=True,
always_on_floor=False,
jointstype="mmm"):
# All face the same direction for the first frame
if canonicalize:
data = canonicalize_joints(joints, jointstype)
else:
data = joints
# Rescaling, shift axis and swap left/right
if jointstype == "humanml3d":
data = data * mmm_to_smplh_scaling_factor
data[..., 1] = - data[..., 1]
# Swap axis (gravity=Z instead of Y)
data = data[..., [2, 0, 1]]
if jointstype == "mmm":
# Make left/right correct
data[..., [1]] = -data[..., [1]]
# Center the first root to the first frame
data -= data[[0], [0], :]
# Remove the floor
data[..., 2] -= data[..., 2].min()
# Put all the body on the floor
if always_on_floor:
data[..., 2] -= data[..., 2].min(1)[:, None]
return data
def NormalInDirection(normal, direction, limit=0.5):
return direction.dot(normal) > limit
def GoingUp(normal, limit=0.5):
return NormalInDirection(normal, (0, 0, 1), limit)
def GoingDown(normal, limit=0.5):
return NormalInDirection(normal, (0, 0, -1), limit)
def GoingSide(normal, limit=0.5):
return GoingUp(normal, limit) == False and GoingDown(normal,
limit) == False
|