File size: 6,345 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Various positional encodings for the transformer.
"""
import math
from typing import List, Optional
import numpy as np
import torch
from torch import Tensor, nn
# from util.misc import NestedTensor
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
# type: (Device) -> NestedTensor # noqa
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
assert mask is not None
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self,
num_pos_feats=64,
temperature=10000,
normalize=False,
scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
mask = tensor_list.mask
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats,
dtype=torch.float32,
device=x.device)
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
class PositionEmbeddingLearned(nn.Module):
"""
Absolute pos embedding, learned.
"""
def __init__(self, num_pos_feats=256):
super().__init__()
self.row_embed = nn.Embedding(50, num_pos_feats)
self.col_embed = nn.Embedding(50, num_pos_feats)
self.reset_parameters()
def reset_parameters(self):
nn.init.uniform_(self.row_embed.weight)
nn.init.uniform_(self.col_embed.weight)
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
h, w = x.shape[-2:]
i = torch.arange(w, device=x.device)
j = torch.arange(h, device=x.device)
x_emb = self.col_embed(i)
y_emb = self.row_embed(j)
pos = torch.cat([
x_emb.unsqueeze(0).repeat(h, 1, 1),
y_emb.unsqueeze(1).repeat(1, w, 1),
],
dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(
x.shape[0], 1, 1, 1)
return pos
class PositionEmbeddingSine1D(nn.Module):
def __init__(self, d_model, max_len=500, batch_first=False):
super().__init__()
self.batch_first = batch_first
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# not used in the final model
if self.batch_first:
pos = self.pe.permute(1, 0, 2)[:, :x.shape[1], :]
else:
pos = self.pe[:x.shape[0], :]
return pos
class PositionEmbeddingLearned1D(nn.Module):
def __init__(self, d_model, max_len=500, batch_first=False):
super().__init__()
self.batch_first = batch_first
# self.dropout = nn.Dropout(p=dropout)
self.pe = nn.Parameter(torch.zeros(max_len, 1, d_model))
# self.pe = pe.unsqueeze(0).transpose(0, 1)
self.reset_parameters()
def reset_parameters(self):
nn.init.uniform_(self.pe)
def forward(self, x):
# not used in the final model
if self.batch_first:
pos = self.pe.permute(1, 0, 2)[:, :x.shape[1], :]
else:
x = x + self.pe[:x.shape[0], :]
return x
# return self.dropout(x)
def build_position_encoding(N_steps,
position_embedding="sine",
embedding_dim="1D"):
# N_steps = hidden_dim // 2
if embedding_dim == "1D":
if position_embedding in ('v2', 'sine'):
position_embedding = PositionEmbeddingSine1D(N_steps)
elif position_embedding in ('v3', 'learned'):
position_embedding = PositionEmbeddingLearned1D(N_steps)
else:
raise ValueError(f"not supported {position_embedding}")
elif embedding_dim == "2D":
if position_embedding in ('v2', 'sine'):
# TODO find a better way of exposing other arguments
position_embedding = PositionEmbeddingSine(N_steps, normalize=True)
elif position_embedding in ('v3', 'learned'):
position_embedding = PositionEmbeddingLearned(N_steps)
else:
raise ValueError(f"not supported {position_embedding}")
else:
raise ValueError(f"not supported {embedding_dim}")
return position_embedding
|