File size: 10,457 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
from typing import List
import os
import torch
from torch import Tensor
from torchmetrics import Metric
from torchmetrics.functional import pairwise_euclidean_distance
from .utils import *
from mGPT.config import instantiate_from_config
class TM2TMetrics(Metric):
def __init__(self,
cfg,
dataname='humanml3d',
top_k=3,
R_size=32,
diversity_times=300,
dist_sync_on_step=True,
**kwargs):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.cfg = cfg
self.dataname = dataname
self.name = "matching, fid, and diversity scores"
self.top_k = top_k
self.R_size = R_size
self.text = 'lm' in cfg.TRAIN.STAGE and cfg.model.params.task == 't2m'
self.diversity_times = diversity_times
self.add_state("count", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("count_seq",
default=torch.tensor(0),
dist_reduce_fx="sum")
self.metrics = []
# Matching scores
if self.text:
self.add_state("Matching_score",
default=torch.tensor(0.0),
dist_reduce_fx="sum")
self.add_state("gt_Matching_score",
default=torch.tensor(0.0),
dist_reduce_fx="sum")
self.Matching_metrics = ["Matching_score", "gt_Matching_score"]
for k in range(1, top_k + 1):
self.add_state(
f"R_precision_top_{str(k)}",
default=torch.tensor(0.0),
dist_reduce_fx="sum",
)
self.Matching_metrics.append(f"R_precision_top_{str(k)}")
for k in range(1, top_k + 1):
self.add_state(
f"gt_R_precision_top_{str(k)}",
default=torch.tensor(0.0),
dist_reduce_fx="sum",
)
self.Matching_metrics.append(f"gt_R_precision_top_{str(k)}")
self.metrics.extend(self.Matching_metrics)
# Fid
self.add_state("FID", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.metrics.append("FID")
# Diversity
self.add_state("Diversity",
default=torch.tensor(0.0),
dist_reduce_fx="sum")
self.add_state("gt_Diversity",
default=torch.tensor(0.0),
dist_reduce_fx="sum")
self.metrics.extend(["Diversity", "gt_Diversity"])
# Chached batches
self.add_state("text_embeddings", default=[], dist_reduce_fx=None)
self.add_state("recmotion_embeddings", default=[], dist_reduce_fx=None)
self.add_state("gtmotion_embeddings", default=[], dist_reduce_fx=None)
# T2M Evaluator
self._get_t2m_evaluator(cfg)
def _get_t2m_evaluator(self, cfg):
"""
load T2M text encoder and motion encoder for evaluating
"""
# init module
self.t2m_textencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_textencoder)
self.t2m_moveencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_moveencoder)
self.t2m_motionencoder = instantiate_from_config(cfg.METRIC.TM2T.t2m_motionencoder)
# load pretrianed
if self.dataname == "kit":
dataname = "kit"
else:
dataname = "t2m"
t2m_checkpoint = torch.load(os.path.join(
cfg.METRIC.TM2T.t2m_path, dataname, "text_mot_match/model/finest.tar"),
map_location="cpu")
self.t2m_textencoder.load_state_dict(t2m_checkpoint["text_encoder"])
self.t2m_moveencoder.load_state_dict(
t2m_checkpoint["movement_encoder"])
self.t2m_motionencoder.load_state_dict(
t2m_checkpoint["motion_encoder"])
# freeze params
self.t2m_textencoder.eval()
self.t2m_moveencoder.eval()
self.t2m_motionencoder.eval()
for p in self.t2m_textencoder.parameters():
p.requires_grad = False
for p in self.t2m_moveencoder.parameters():
p.requires_grad = False
for p in self.t2m_motionencoder.parameters():
p.requires_grad = False
@torch.no_grad()
def compute(self, sanity_flag):
count = self.count.item()
count_seq = self.count_seq.item()
# Init metrics dict
metrics = {metric: getattr(self, metric) for metric in self.metrics}
# Jump in sanity check stage
if sanity_flag:
return metrics
# Cat cached batches and shuffle
shuffle_idx = torch.randperm(count_seq)
all_genmotions = torch.cat(self.recmotion_embeddings,
axis=0).cpu()[shuffle_idx, :]
all_gtmotions = torch.cat(self.gtmotion_embeddings,
axis=0).cpu()[shuffle_idx, :]
# Compute text related metrics
if self.text:
all_texts = torch.cat(self.text_embeddings,
axis=0).cpu()[shuffle_idx, :]
# Compute r-precision
assert count_seq > self.R_size
top_k_mat = torch.zeros((self.top_k, ))
for i in range(count_seq // self.R_size):
# [bs=32, 1*256]
group_texts = all_texts[i * self.R_size:(i + 1) * self.R_size]
# [bs=32, 1*256]
group_motions = all_genmotions[i * self.R_size:(i + 1) *
self.R_size]
# dist_mat = pairwise_euclidean_distance(group_texts, group_motions)
# [bs=32, 32]
dist_mat = euclidean_distance_matrix(
group_texts, group_motions).nan_to_num()
# print(dist_mat[:5])
self.Matching_score += dist_mat.trace()
argsmax = torch.argsort(dist_mat, dim=1)
top_k_mat += calculate_top_k(argsmax,
top_k=self.top_k).sum(axis=0)
R_count = count_seq // self.R_size * self.R_size
metrics["Matching_score"] = self.Matching_score / R_count
for k in range(self.top_k):
metrics[f"R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count
# Compute r-precision with gt
assert count_seq > self.R_size
top_k_mat = torch.zeros((self.top_k, ))
for i in range(count_seq // self.R_size):
# [bs=32, 1*256]
group_texts = all_texts[i * self.R_size:(i + 1) * self.R_size]
# [bs=32, 1*256]
group_motions = all_gtmotions[i * self.R_size:(i + 1) *
self.R_size]
# [bs=32, 32]
dist_mat = euclidean_distance_matrix(
group_texts, group_motions).nan_to_num()
# match score
self.gt_Matching_score += dist_mat.trace()
argsmax = torch.argsort(dist_mat, dim=1)
top_k_mat += calculate_top_k(argsmax,
top_k=self.top_k).sum(axis=0)
metrics["gt_Matching_score"] = self.gt_Matching_score / R_count
for k in range(self.top_k):
metrics[f"gt_R_precision_top_{str(k+1)}"] = top_k_mat[k] / R_count
# tensor -> numpy for FID
all_genmotions = all_genmotions.numpy()
all_gtmotions = all_gtmotions.numpy()
# Compute fid
mu, cov = calculate_activation_statistics_np(all_genmotions)
gt_mu, gt_cov = calculate_activation_statistics_np(all_gtmotions)
metrics["FID"] = calculate_frechet_distance_np(gt_mu, gt_cov, mu, cov)
# Compute diversity
assert count_seq > self.diversity_times
metrics["Diversity"] = calculate_diversity_np(all_genmotions,
self.diversity_times)
metrics["gt_Diversity"] = calculate_diversity_np(
all_gtmotions, self.diversity_times)
# Reset
self.reset()
return {**metrics}
@torch.no_grad()
def update(self,
feats_ref: Tensor,
feats_rst: Tensor,
lengths_ref: List[int],
lengths_rst: List[int],
word_embs: Tensor = None,
pos_ohot: Tensor = None,
text_lengths: Tensor = None):
self.count += sum(lengths_ref)
self.count_seq += len(lengths_ref)
# T2m motion encoder
align_idx = np.argsort(lengths_ref)[::-1].copy()
feats_ref = feats_ref[align_idx]
lengths_ref = np.array(lengths_ref)[align_idx]
gtmotion_embeddings = self.get_motion_embeddings(
feats_ref, lengths_ref)
cache = [0] * len(lengths_ref)
for i in range(len(lengths_ref)):
cache[align_idx[i]] = gtmotion_embeddings[i:i + 1]
self.gtmotion_embeddings.extend(cache)
align_idx = np.argsort(lengths_rst)[::-1].copy()
feats_rst = feats_rst[align_idx]
lengths_rst = np.array(lengths_rst)[align_idx]
recmotion_embeddings = self.get_motion_embeddings(
feats_rst, lengths_rst)
cache = [0] * len(lengths_rst)
for i in range(len(lengths_rst)):
cache[align_idx[i]] = recmotion_embeddings[i:i + 1]
self.recmotion_embeddings.extend(cache)
# T2m text encoder
if self.text:
text_emb = self.t2m_textencoder(word_embs, pos_ohot, text_lengths)
text_embeddings = torch.flatten(text_emb, start_dim=1).detach()
self.text_embeddings.append(text_embeddings)
def get_motion_embeddings(self, feats: Tensor, lengths: List[int]):
m_lens = torch.tensor(lengths)
m_lens = torch.div(m_lens,
self.cfg.DATASET.HUMANML3D.UNIT_LEN,
rounding_mode="floor")
m_lens = m_lens // self.cfg.DATASET.HUMANML3D.UNIT_LEN
mov = self.t2m_moveencoder(feats[..., :-4]).detach()
emb = self.t2m_motionencoder(mov, m_lens)
# [bs, nlatent*ndim] <= [bs, nlatent, ndim]
return torch.flatten(emb, start_dim=1).detach()
|