File size: 2,349 Bytes
4409449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2020 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
from typing import Optional
import torch
from torch import Tensor, nn
from pathlib import Path
import os
class Rots2Rfeats(nn.Module):
def __init__(self, path: Optional[str] = None,
normalization: bool = True,
eps: float = 1e-12,
**kwargs) -> None:
if normalization and path is None:
raise TypeError("You should provide a path if normalization is on.")
super().__init__()
self.normalization = normalization
self.eps = eps
if normalization:
# workaround for cluster local/sync
rel_p = path.split('/')
# superhacky it is for the datatype ugly stuff change it, copy the main stuff to seperate_pairs dict
if rel_p[-1] == 'separate_pairs':
rel_p.remove('separate_pairs')
########################################################
# rel_p = rel_p[rel_p.index('deps'):]
rel_p = '/'.join(rel_p)
# path = hydra.utils.get_original_cwd() + '/' + rel_p
path = rel_p
mean_path = Path(path) / "rfeats_mean.pt"
std_path = Path(path) / "rfeats_std.pt"
self.register_buffer('mean', torch.load(mean_path))
self.register_buffer('std', torch.load(std_path))
def normalize(self, features: Tensor) -> Tensor:
if self.normalization:
features = (features - self.mean)/(self.std + self.eps)
return features
def unnormalize(self, features: Tensor) -> Tensor:
if self.normalization:
features = features * self.std + self.mean
return features
|