Spaces:
Paused
Paused
Upload 5 files
Browse files- xdecoder/body/decoder/build.py +12 -0
- xdecoder/body/decoder/registry.py +13 -0
- xdecoder/body/decoder/tmp.py +664 -0
- xdecoder/body/decoder/xdecoder.py +700 -0
- xdecoder/body/decoder/xdecoder2.py +700 -0
xdecoder/body/decoder/build.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .registry import model_entrypoints
|
2 |
+
from .registry import is_model
|
3 |
+
|
4 |
+
from .xdecoder import *
|
5 |
+
|
6 |
+
def build_decoder(config, *args, **kwargs):
|
7 |
+
model_name = config['MODEL']['DECODER']['NAME']
|
8 |
+
|
9 |
+
if not is_model(model_name):
|
10 |
+
raise ValueError(f'Unkown model: {model_name}')
|
11 |
+
|
12 |
+
return model_entrypoints(model_name)(config, *args, **kwargs)
|
xdecoder/body/decoder/registry.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_model_entrypoints = {}
|
2 |
+
|
3 |
+
def register_decoder(fn):
|
4 |
+
module_name_split = fn.__module__.split('.')
|
5 |
+
model_name = module_name_split[-1]
|
6 |
+
_model_entrypoints[model_name] = fn
|
7 |
+
return fn
|
8 |
+
|
9 |
+
def model_entrypoints(model_name):
|
10 |
+
return _model_entrypoints[model_name]
|
11 |
+
|
12 |
+
def is_model(model_name):
|
13 |
+
return model_name in _model_entrypoints
|
xdecoder/body/decoder/tmp.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
import logging
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn, Tensor
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from timm.models.layers import trunc_normal_
|
11 |
+
from detectron2.layers import Conv2d
|
12 |
+
import fvcore.nn.weight_init as weight_init
|
13 |
+
|
14 |
+
from .registry import register_decoder
|
15 |
+
from ...utils import configurable
|
16 |
+
from ...modules import PositionEmbeddingSine
|
17 |
+
|
18 |
+
from image2html.visualizer import VL
|
19 |
+
|
20 |
+
|
21 |
+
class SelfAttentionLayer(nn.Module):
|
22 |
+
|
23 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
24 |
+
activation="relu", normalize_before=False):
|
25 |
+
super().__init__()
|
26 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
27 |
+
|
28 |
+
self.norm = nn.LayerNorm(d_model)
|
29 |
+
self.dropout = nn.Dropout(dropout)
|
30 |
+
|
31 |
+
self.activation = _get_activation_fn(activation)
|
32 |
+
self.normalize_before = normalize_before
|
33 |
+
|
34 |
+
self._reset_parameters()
|
35 |
+
|
36 |
+
def _reset_parameters(self):
|
37 |
+
for p in self.parameters():
|
38 |
+
if p.dim() > 1:
|
39 |
+
nn.init.xavier_uniform_(p)
|
40 |
+
|
41 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
42 |
+
return tensor if pos is None else tensor + pos
|
43 |
+
|
44 |
+
def forward_post(self, tgt,
|
45 |
+
tgt_mask: Optional[Tensor] = None,
|
46 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
47 |
+
query_pos: Optional[Tensor] = None):
|
48 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
49 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
50 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
51 |
+
tgt = tgt + self.dropout(tgt2)
|
52 |
+
tgt = self.norm(tgt)
|
53 |
+
|
54 |
+
return tgt
|
55 |
+
|
56 |
+
def forward_pre(self, tgt,
|
57 |
+
tgt_mask: Optional[Tensor] = None,
|
58 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
59 |
+
query_pos: Optional[Tensor] = None):
|
60 |
+
tgt2 = self.norm(tgt)
|
61 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
62 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
63 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
64 |
+
tgt = tgt + self.dropout(tgt2)
|
65 |
+
|
66 |
+
return tgt
|
67 |
+
|
68 |
+
def forward(self, tgt,
|
69 |
+
tgt_mask: Optional[Tensor] = None,
|
70 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
71 |
+
query_pos: Optional[Tensor] = None):
|
72 |
+
if self.normalize_before:
|
73 |
+
return self.forward_pre(tgt, tgt_mask,
|
74 |
+
tgt_key_padding_mask, query_pos)
|
75 |
+
return self.forward_post(tgt, tgt_mask,
|
76 |
+
tgt_key_padding_mask, query_pos)
|
77 |
+
|
78 |
+
|
79 |
+
class CrossAttentionLayer(nn.Module):
|
80 |
+
|
81 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
82 |
+
activation="relu", normalize_before=False):
|
83 |
+
super().__init__()
|
84 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
85 |
+
|
86 |
+
self.norm = nn.LayerNorm(d_model)
|
87 |
+
self.dropout = nn.Dropout(dropout)
|
88 |
+
|
89 |
+
self.activation = _get_activation_fn(activation)
|
90 |
+
self.normalize_before = normalize_before
|
91 |
+
|
92 |
+
self._reset_parameters()
|
93 |
+
|
94 |
+
def _reset_parameters(self):
|
95 |
+
for p in self.parameters():
|
96 |
+
if p.dim() > 1:
|
97 |
+
nn.init.xavier_uniform_(p)
|
98 |
+
|
99 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
100 |
+
return tensor if pos is None else tensor + pos
|
101 |
+
|
102 |
+
def forward_post(self, tgt, memory,
|
103 |
+
memory_mask: Optional[Tensor] = None,
|
104 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
105 |
+
pos: Optional[Tensor] = None,
|
106 |
+
query_pos: Optional[Tensor] = None):
|
107 |
+
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
108 |
+
key=self.with_pos_embed(memory, pos),
|
109 |
+
value=memory, attn_mask=memory_mask,
|
110 |
+
key_padding_mask=memory_key_padding_mask)
|
111 |
+
tgt = tgt + self.dropout(tgt2)
|
112 |
+
tgt = self.norm(tgt)
|
113 |
+
return tgt, avg_attn
|
114 |
+
|
115 |
+
def forward_pre(self, tgt, memory,
|
116 |
+
memory_mask: Optional[Tensor] = None,
|
117 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
118 |
+
pos: Optional[Tensor] = None,
|
119 |
+
query_pos: Optional[Tensor] = None):
|
120 |
+
tgt2 = self.norm(tgt)
|
121 |
+
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
122 |
+
key=self.with_pos_embed(memory, pos),
|
123 |
+
value=memory, attn_mask=memory_mask,
|
124 |
+
key_padding_mask=memory_key_padding_mask)
|
125 |
+
tgt = tgt + self.dropout(tgt2)
|
126 |
+
|
127 |
+
return tgt, avg_attn
|
128 |
+
|
129 |
+
def forward(self, tgt, memory,
|
130 |
+
memory_mask: Optional[Tensor] = None,
|
131 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
132 |
+
pos: Optional[Tensor] = None,
|
133 |
+
query_pos: Optional[Tensor] = None):
|
134 |
+
if self.normalize_before:
|
135 |
+
return self.forward_pre(tgt, memory, memory_mask,
|
136 |
+
memory_key_padding_mask, pos, query_pos)
|
137 |
+
return self.forward_post(tgt, memory, memory_mask,
|
138 |
+
memory_key_padding_mask, pos, query_pos)
|
139 |
+
|
140 |
+
|
141 |
+
class FFNLayer(nn.Module):
|
142 |
+
|
143 |
+
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
|
144 |
+
activation="relu", normalize_before=False):
|
145 |
+
super().__init__()
|
146 |
+
# Implementation of Feedforward model
|
147 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
148 |
+
self.dropout = nn.Dropout(dropout)
|
149 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
150 |
+
|
151 |
+
self.norm = nn.LayerNorm(d_model)
|
152 |
+
|
153 |
+
self.activation = _get_activation_fn(activation)
|
154 |
+
self.normalize_before = normalize_before
|
155 |
+
|
156 |
+
self._reset_parameters()
|
157 |
+
|
158 |
+
def _reset_parameters(self):
|
159 |
+
for p in self.parameters():
|
160 |
+
if p.dim() > 1:
|
161 |
+
nn.init.xavier_uniform_(p)
|
162 |
+
|
163 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
164 |
+
return tensor if pos is None else tensor + pos
|
165 |
+
|
166 |
+
def forward_post(self, tgt):
|
167 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
168 |
+
tgt = tgt + self.dropout(tgt2)
|
169 |
+
tgt = self.norm(tgt)
|
170 |
+
return tgt
|
171 |
+
|
172 |
+
def forward_pre(self, tgt):
|
173 |
+
tgt2 = self.norm(tgt)
|
174 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
175 |
+
tgt = tgt + self.dropout(tgt2)
|
176 |
+
return tgt
|
177 |
+
|
178 |
+
def forward(self, tgt):
|
179 |
+
if self.normalize_before:
|
180 |
+
return self.forward_pre(tgt)
|
181 |
+
return self.forward_post(tgt)
|
182 |
+
|
183 |
+
|
184 |
+
def _get_activation_fn(activation):
|
185 |
+
"""Return an activation function given a string"""
|
186 |
+
if activation == "relu":
|
187 |
+
return F.relu
|
188 |
+
if activation == "gelu":
|
189 |
+
return F.gelu
|
190 |
+
if activation == "glu":
|
191 |
+
return F.glu
|
192 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
193 |
+
|
194 |
+
|
195 |
+
class MLP(nn.Module):
|
196 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
197 |
+
|
198 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
199 |
+
super().__init__()
|
200 |
+
self.num_layers = num_layers
|
201 |
+
h = [hidden_dim] * (num_layers - 1)
|
202 |
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
for i, layer in enumerate(self.layers):
|
206 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
class MultiScaleMaskedTransformerDecoder(nn.Module):
|
211 |
+
|
212 |
+
_version = 2
|
213 |
+
|
214 |
+
@configurable
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
lang_encoder: nn.Module,
|
218 |
+
in_channels,
|
219 |
+
mask_classification=True,
|
220 |
+
*,
|
221 |
+
hidden_dim: int,
|
222 |
+
dim_proj: int,
|
223 |
+
num_queries: int,
|
224 |
+
contxt_len: int,
|
225 |
+
nheads: int,
|
226 |
+
dim_feedforward: int,
|
227 |
+
dec_layers: int,
|
228 |
+
pre_norm: bool,
|
229 |
+
mask_dim: int,
|
230 |
+
task_switch: dict,
|
231 |
+
captioning_step: int,
|
232 |
+
enforce_input_project: bool,
|
233 |
+
):
|
234 |
+
"""
|
235 |
+
NOTE: this interface is experimental.
|
236 |
+
Args:
|
237 |
+
in_channels: channels of the input features
|
238 |
+
mask_classification: whether to add mask classifier or not
|
239 |
+
num_classes: number of classes
|
240 |
+
hidden_dim: Transformer feature dimension
|
241 |
+
num_queries: number of queries
|
242 |
+
nheads: number of heads
|
243 |
+
dim_feedforward: feature dimension in feedforward network
|
244 |
+
enc_layers: number of Transformer encoder layers
|
245 |
+
dec_layers: number of Transformer decoder layers
|
246 |
+
pre_norm: whether to use pre-LayerNorm or not
|
247 |
+
mask_dim: mask feature dimension
|
248 |
+
enforce_input_project: add input project 1x1 conv even if input
|
249 |
+
channels and hidden dim is identical
|
250 |
+
"""
|
251 |
+
super().__init__()
|
252 |
+
assert mask_classification, "Only support mask classification model"
|
253 |
+
self.mask_classification = mask_classification
|
254 |
+
|
255 |
+
# positional encoding
|
256 |
+
N_steps = hidden_dim // 2
|
257 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
258 |
+
|
259 |
+
# define Transformer decoder here
|
260 |
+
self.num_heads = nheads
|
261 |
+
self.num_layers = dec_layers
|
262 |
+
self.contxt_len = contxt_len
|
263 |
+
self.transformer_self_attention_layers = nn.ModuleList()
|
264 |
+
self.transformer_cross_attention_layers = nn.ModuleList()
|
265 |
+
self.transformer_ffn_layers = nn.ModuleList()
|
266 |
+
|
267 |
+
for _ in range(self.num_layers):
|
268 |
+
self.transformer_self_attention_layers.append(
|
269 |
+
SelfAttentionLayer(
|
270 |
+
d_model=hidden_dim,
|
271 |
+
nhead=nheads,
|
272 |
+
dropout=0.0,
|
273 |
+
normalize_before=pre_norm,
|
274 |
+
)
|
275 |
+
)
|
276 |
+
|
277 |
+
self.transformer_cross_attention_layers.append(
|
278 |
+
CrossAttentionLayer(
|
279 |
+
d_model=hidden_dim,
|
280 |
+
nhead=nheads,
|
281 |
+
dropout=0.0,
|
282 |
+
normalize_before=pre_norm,
|
283 |
+
)
|
284 |
+
)
|
285 |
+
|
286 |
+
self.transformer_ffn_layers.append(
|
287 |
+
FFNLayer(
|
288 |
+
d_model=hidden_dim,
|
289 |
+
dim_feedforward=dim_feedforward,
|
290 |
+
dropout=0.0,
|
291 |
+
normalize_before=pre_norm,
|
292 |
+
)
|
293 |
+
)
|
294 |
+
|
295 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
296 |
+
|
297 |
+
self.num_queries = num_queries
|
298 |
+
# learnable query features
|
299 |
+
self.query_feat = nn.Embedding(num_queries, hidden_dim)
|
300 |
+
# learnable query p.e.
|
301 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
302 |
+
|
303 |
+
# level embedding (we always use 3 scales)
|
304 |
+
self.num_feature_levels = 3
|
305 |
+
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
|
306 |
+
self.input_proj = nn.ModuleList()
|
307 |
+
|
308 |
+
for _ in range(self.num_feature_levels):
|
309 |
+
if in_channels != hidden_dim or enforce_input_project:
|
310 |
+
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
|
311 |
+
weight_init.c2_xavier_fill(self.input_proj[-1])
|
312 |
+
else:
|
313 |
+
self.input_proj.append(nn.Sequential())
|
314 |
+
|
315 |
+
self.task_switch = task_switch
|
316 |
+
|
317 |
+
# output FFNs
|
318 |
+
self.lang_encoder = lang_encoder
|
319 |
+
if self.task_switch['mask']:
|
320 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
321 |
+
|
322 |
+
self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
|
323 |
+
trunc_normal_(self.class_embed, std=.02)
|
324 |
+
|
325 |
+
if task_switch['bbox']:
|
326 |
+
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
327 |
+
|
328 |
+
# Caption Project and query
|
329 |
+
if task_switch['captioning']:
|
330 |
+
self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
|
331 |
+
trunc_normal_(self.caping_embed, std=.02)
|
332 |
+
self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
|
333 |
+
self.captioning_step = captioning_step
|
334 |
+
|
335 |
+
# register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
|
336 |
+
self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
|
337 |
+
self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
|
338 |
+
self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
|
339 |
+
self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
|
340 |
+
self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
|
341 |
+
self.register_buffer("self_attn_mask", self_attn_mask)
|
342 |
+
|
343 |
+
|
344 |
+
@classmethod
|
345 |
+
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
|
346 |
+
ret = {}
|
347 |
+
|
348 |
+
ret["lang_encoder"] = lang_encoder
|
349 |
+
ret["in_channels"] = in_channels
|
350 |
+
ret["mask_classification"] = mask_classification
|
351 |
+
|
352 |
+
enc_cfg = cfg['MODEL']['ENCODER']
|
353 |
+
dec_cfg = cfg['MODEL']['DECODER']
|
354 |
+
|
355 |
+
ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
|
356 |
+
ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
|
357 |
+
ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
|
358 |
+
ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
|
359 |
+
|
360 |
+
# Transformer parameters:
|
361 |
+
ret["nheads"] = dec_cfg['NHEADS']
|
362 |
+
ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
|
363 |
+
|
364 |
+
# NOTE: because we add learnable query features which requires supervision,
|
365 |
+
# we add minus 1 to decoder layers to be consistent with our loss
|
366 |
+
# implementation: that is, number of auxiliary losses is always
|
367 |
+
# equal to number of decoder layers. With learnable query features, the number of
|
368 |
+
# auxiliary losses equals number of decoders plus 1.
|
369 |
+
assert dec_cfg['DEC_LAYERS'] >= 1
|
370 |
+
ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
|
371 |
+
ret["pre_norm"] = dec_cfg['PRE_NORM']
|
372 |
+
ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
|
373 |
+
ret["mask_dim"] = enc_cfg['MASK_DIM']
|
374 |
+
|
375 |
+
ret["task_switch"] = extra['task_switch']
|
376 |
+
ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
|
377 |
+
|
378 |
+
return ret
|
379 |
+
|
380 |
+
def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
|
381 |
+
if task == 'captioning_infer':
|
382 |
+
return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
|
383 |
+
# x is a list of multi-scale feature
|
384 |
+
assert len(x) == self.num_feature_levels
|
385 |
+
src = []
|
386 |
+
pos = []
|
387 |
+
size_list = []
|
388 |
+
|
389 |
+
# disable mask, it does not affect performance
|
390 |
+
del mask
|
391 |
+
for i in range(self.num_feature_levels):
|
392 |
+
size_list.append(x[i].shape[-2:])
|
393 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
394 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
395 |
+
|
396 |
+
# flatten NxCxHxW to HWxNxC
|
397 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
398 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
399 |
+
|
400 |
+
_, bs, _ = src[0].shape
|
401 |
+
|
402 |
+
# QxNxC
|
403 |
+
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
404 |
+
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
405 |
+
|
406 |
+
predictions_class = []
|
407 |
+
predictions_mask = []
|
408 |
+
predictions_bbox = []
|
409 |
+
predictions_caption = []
|
410 |
+
predictions_captioning = []
|
411 |
+
|
412 |
+
self_tgt_mask = None
|
413 |
+
if self.training and task == 'vlp' and self.task_switch['captioning']:
|
414 |
+
output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
|
415 |
+
caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
|
416 |
+
query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
|
417 |
+
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
|
418 |
+
elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
419 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
420 |
+
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
|
421 |
+
grounding_tokens = extra['grounding_tokens']
|
422 |
+
_grounding_tokens = grounding_tokens.detach().clone()
|
423 |
+
# initialize with negative attention at the beginning.
|
424 |
+
pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
|
425 |
+
pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
|
426 |
+
pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
|
427 |
+
self_tgt_mask = pad_tgt_mask
|
428 |
+
output = torch.cat((output, output[:-1]), dim=0)
|
429 |
+
query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
|
430 |
+
else:
|
431 |
+
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
|
432 |
+
|
433 |
+
# prediction heads on learnable query features
|
434 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
|
435 |
+
attn_mask = results["attn_mask"]
|
436 |
+
predictions_class.append(results["outputs_class"])
|
437 |
+
predictions_mask.append(results["outputs_mask"])
|
438 |
+
predictions_bbox.append(results["outputs_bbox"])
|
439 |
+
predictions_caption.append(results["outputs_caption"])
|
440 |
+
predictions_captioning.append(results["outputs_captionting"])
|
441 |
+
|
442 |
+
for i in range(self.num_layers):
|
443 |
+
level_index = i % self.num_feature_levels
|
444 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
445 |
+
|
446 |
+
if self.training and task == 'vlp' and self.task_switch['captioning']:
|
447 |
+
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
|
448 |
+
# attention: cross-attention first
|
449 |
+
output, avg_attn = self.transformer_cross_attention_layers[i](
|
450 |
+
output, src[level_index],
|
451 |
+
memory_mask=attn_mask,
|
452 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
453 |
+
pos=pos[level_index], query_pos=query_embed
|
454 |
+
)
|
455 |
+
|
456 |
+
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
457 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
458 |
+
output = torch.cat((output, _grounding_tokens), dim=0)
|
459 |
+
query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
|
460 |
+
|
461 |
+
output = self.transformer_self_attention_layers[i](
|
462 |
+
output, tgt_mask=self_tgt_mask,
|
463 |
+
tgt_key_padding_mask=None,
|
464 |
+
query_pos=query_embed
|
465 |
+
)
|
466 |
+
|
467 |
+
# FFN
|
468 |
+
output = self.transformer_ffn_layers[i](
|
469 |
+
output
|
470 |
+
)
|
471 |
+
|
472 |
+
if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
|
473 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
474 |
+
_grounding_tokens = output[-len(_grounding_tokens):]
|
475 |
+
output = output[:-len(_grounding_tokens)]
|
476 |
+
query_embed = query_embed[:-len(_grounding_tokens)]
|
477 |
+
|
478 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
|
479 |
+
attn_mask = results["attn_mask"]
|
480 |
+
predictions_class.append(results["outputs_class"])
|
481 |
+
predictions_mask.append(results["outputs_mask"])
|
482 |
+
predictions_bbox.append(results["outputs_bbox"])
|
483 |
+
predictions_caption.append(results["outputs_caption"])
|
484 |
+
predictions_captioning.append(results["outputs_captionting"])
|
485 |
+
|
486 |
+
assert len(predictions_class) == self.num_layers + 1
|
487 |
+
if task == 'vlp':
|
488 |
+
out = {'pred_captionings': predictions_captioning[-1],
|
489 |
+
'pred_captions': predictions_caption[-1],
|
490 |
+
'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
|
491 |
+
return out
|
492 |
+
else:
|
493 |
+
out = {
|
494 |
+
'pred_logits': predictions_class[-1],
|
495 |
+
'pred_masks': predictions_mask[-1],
|
496 |
+
'pred_boxes': predictions_bbox[-1],
|
497 |
+
'pred_captions': predictions_caption[-1],
|
498 |
+
'aux_outputs': self._set_aux_loss(
|
499 |
+
predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
|
500 |
+
)
|
501 |
+
}
|
502 |
+
return out
|
503 |
+
|
504 |
+
def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
|
505 |
+
# x is a list of multi-scale feature
|
506 |
+
assert len(x) == self.num_feature_levels
|
507 |
+
src = []
|
508 |
+
pos = []
|
509 |
+
size_list = []
|
510 |
+
|
511 |
+
# disable mask, it does not affect performance
|
512 |
+
del mask
|
513 |
+
for i in range(self.num_feature_levels):
|
514 |
+
size_list.append(x[i].shape[-2:])
|
515 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
516 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
517 |
+
|
518 |
+
# flatten NxCxHxW to HWxNxC
|
519 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
520 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
521 |
+
|
522 |
+
_, bs, _ = src[0].shape
|
523 |
+
|
524 |
+
# QxNxC
|
525 |
+
query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
526 |
+
query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
527 |
+
caping_lang_token = extra['start_token'].repeat(bs, 1)
|
528 |
+
query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
|
529 |
+
|
530 |
+
# prepare token embedding for evaluation
|
531 |
+
token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
|
532 |
+
# token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
|
533 |
+
|
534 |
+
for cap_idx in range(0, self.captioning_step):
|
535 |
+
caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
|
536 |
+
query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
|
537 |
+
output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
|
538 |
+
|
539 |
+
# prediction heads on learnable query features
|
540 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
|
541 |
+
attn_mask = results["attn_mask"]
|
542 |
+
|
543 |
+
for i in range(self.num_layers):
|
544 |
+
level_index = i % self.num_feature_levels
|
545 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
546 |
+
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
|
547 |
+
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
|
548 |
+
|
549 |
+
# attention: cross-attention first
|
550 |
+
output, avg_attn = self.transformer_cross_attention_layers[i](
|
551 |
+
output, src[level_index],
|
552 |
+
memory_mask=attn_mask,
|
553 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
554 |
+
pos=pos[level_index], query_pos=query_embed
|
555 |
+
)
|
556 |
+
|
557 |
+
output = self.transformer_self_attention_layers[i](
|
558 |
+
output, tgt_mask=self_tgt_mask,
|
559 |
+
tgt_key_padding_mask=None,
|
560 |
+
query_pos=query_embed
|
561 |
+
)
|
562 |
+
|
563 |
+
# FFN
|
564 |
+
output = self.transformer_ffn_layers[i](
|
565 |
+
output
|
566 |
+
)
|
567 |
+
|
568 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
|
569 |
+
attn_mask = results["attn_mask"]
|
570 |
+
|
571 |
+
pred_captions_gen = results['outputs_captionting']
|
572 |
+
# pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
|
573 |
+
pred_captions_gen = pred_captions_gen @ token_embs.t()
|
574 |
+
caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
|
575 |
+
|
576 |
+
out = {'pred_captionings': caping_lang_token,
|
577 |
+
'pred_texts': self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=True)}
|
578 |
+
return out
|
579 |
+
|
580 |
+
|
581 |
+
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
|
582 |
+
decoder_output = self.decoder_norm(output)
|
583 |
+
decoder_output = decoder_output.transpose(0, 1)
|
584 |
+
|
585 |
+
# extract image captioning token from decoder output.
|
586 |
+
if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
|
587 |
+
outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
|
588 |
+
else:
|
589 |
+
outputs_captionting = None
|
590 |
+
|
591 |
+
# recompute class token output.
|
592 |
+
norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
|
593 |
+
obj_token = norm_decoder_output[:,:self.num_queries-1]
|
594 |
+
cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
|
595 |
+
|
596 |
+
sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
|
597 |
+
cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
|
598 |
+
|
599 |
+
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
600 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
601 |
+
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
|
602 |
+
else:
|
603 |
+
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
|
604 |
+
|
605 |
+
# compute class, mask and bbox.
|
606 |
+
class_embed = decoder_output @ self.class_embed
|
607 |
+
# HACK do not compute similarity if mask is not on
|
608 |
+
outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
|
609 |
+
|
610 |
+
if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
|
611 |
+
mask_embed = self.mask_embed(decoder_output)
|
612 |
+
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
613 |
+
|
614 |
+
# NOTE: prediction is of higher-resolution
|
615 |
+
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
|
616 |
+
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
|
617 |
+
|
618 |
+
# must use bool type
|
619 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
620 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
621 |
+
attn_mask = attn_mask.detach()
|
622 |
+
|
623 |
+
# NOTE: fill False for cls token (JY)
|
624 |
+
attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
|
625 |
+
else:
|
626 |
+
outputs_mask = None
|
627 |
+
attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
|
628 |
+
|
629 |
+
outputs_bbox = [None for i in range(len(decoder_output))]
|
630 |
+
if self.task_switch['bbox']:
|
631 |
+
outputs_bbox = self.bbox_embed(decoder_output)
|
632 |
+
|
633 |
+
outputs_caption = None
|
634 |
+
if self.task_switch['caption']:
|
635 |
+
outputs_caption = class_embed
|
636 |
+
|
637 |
+
|
638 |
+
results = {
|
639 |
+
"outputs_class": outputs_class,
|
640 |
+
"outputs_mask": outputs_mask,
|
641 |
+
"outputs_bbox": outputs_bbox,
|
642 |
+
"attn_mask": attn_mask,
|
643 |
+
"outputs_caption": outputs_caption,
|
644 |
+
"outputs_captionting": outputs_captionting,
|
645 |
+
}
|
646 |
+
return results
|
647 |
+
|
648 |
+
@torch.jit.unused
|
649 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
|
650 |
+
# this is a workaround to make torchscript happy, as torchscript
|
651 |
+
# doesn't support dictionary with non-homogeneous values, such
|
652 |
+
# as a dict having both a Tensor and a list.
|
653 |
+
if self.mask_classification:
|
654 |
+
return [
|
655 |
+
{"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
|
656 |
+
for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
|
657 |
+
]
|
658 |
+
else:
|
659 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
660 |
+
|
661 |
+
|
662 |
+
@register_decoder
|
663 |
+
def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
|
664 |
+
return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
|
xdecoder/body/decoder/xdecoder.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
|
4 |
+
# --------------------------------------------------------
|
5 |
+
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
|
6 |
+
# Copyright (c) 2022 Microsoft
|
7 |
+
# Licensed under The MIT License [see LICENSE for details]
|
8 |
+
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
|
9 |
+
# --------------------------------------------------------
|
10 |
+
|
11 |
+
|
12 |
+
import logging
|
13 |
+
from typing import Optional
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn, Tensor
|
17 |
+
from torch.nn import functional as F
|
18 |
+
|
19 |
+
from timm.models.layers import trunc_normal_
|
20 |
+
from detectron2.layers import Conv2d
|
21 |
+
import fvcore.nn.weight_init as weight_init
|
22 |
+
|
23 |
+
from .registry import register_decoder
|
24 |
+
from ...utils import configurable
|
25 |
+
from ...modules import PositionEmbeddingSine
|
26 |
+
|
27 |
+
|
28 |
+
class SelfAttentionLayer(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
31 |
+
activation="relu", normalize_before=False):
|
32 |
+
super().__init__()
|
33 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
34 |
+
|
35 |
+
self.norm = nn.LayerNorm(d_model)
|
36 |
+
self.dropout = nn.Dropout(dropout)
|
37 |
+
|
38 |
+
self.activation = _get_activation_fn(activation)
|
39 |
+
self.normalize_before = normalize_before
|
40 |
+
|
41 |
+
self._reset_parameters()
|
42 |
+
|
43 |
+
def _reset_parameters(self):
|
44 |
+
for p in self.parameters():
|
45 |
+
if p.dim() > 1:
|
46 |
+
nn.init.xavier_uniform_(p)
|
47 |
+
|
48 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
49 |
+
return tensor if pos is None else tensor + pos
|
50 |
+
|
51 |
+
def forward_post(self, tgt,
|
52 |
+
tgt_mask: Optional[Tensor] = None,
|
53 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
54 |
+
query_pos: Optional[Tensor] = None):
|
55 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
56 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
57 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
58 |
+
tgt = tgt + self.dropout(tgt2)
|
59 |
+
tgt = self.norm(tgt)
|
60 |
+
|
61 |
+
return tgt
|
62 |
+
|
63 |
+
def forward_pre(self, tgt,
|
64 |
+
tgt_mask: Optional[Tensor] = None,
|
65 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
66 |
+
query_pos: Optional[Tensor] = None):
|
67 |
+
tgt2 = self.norm(tgt)
|
68 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
69 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
70 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
71 |
+
tgt = tgt + self.dropout(tgt2)
|
72 |
+
|
73 |
+
return tgt
|
74 |
+
|
75 |
+
def forward(self, tgt,
|
76 |
+
tgt_mask: Optional[Tensor] = None,
|
77 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
78 |
+
query_pos: Optional[Tensor] = None):
|
79 |
+
if self.normalize_before:
|
80 |
+
return self.forward_pre(tgt, tgt_mask,
|
81 |
+
tgt_key_padding_mask, query_pos)
|
82 |
+
return self.forward_post(tgt, tgt_mask,
|
83 |
+
tgt_key_padding_mask, query_pos)
|
84 |
+
|
85 |
+
|
86 |
+
class CrossAttentionLayer(nn.Module):
|
87 |
+
|
88 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
89 |
+
activation="relu", normalize_before=False):
|
90 |
+
super().__init__()
|
91 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
92 |
+
|
93 |
+
self.norm = nn.LayerNorm(d_model)
|
94 |
+
self.dropout = nn.Dropout(dropout)
|
95 |
+
|
96 |
+
self.activation = _get_activation_fn(activation)
|
97 |
+
self.normalize_before = normalize_before
|
98 |
+
|
99 |
+
self._reset_parameters()
|
100 |
+
|
101 |
+
def _reset_parameters(self):
|
102 |
+
for p in self.parameters():
|
103 |
+
if p.dim() > 1:
|
104 |
+
nn.init.xavier_uniform_(p)
|
105 |
+
|
106 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
107 |
+
return tensor if pos is None else tensor + pos
|
108 |
+
|
109 |
+
def forward_post(self, tgt, memory,
|
110 |
+
memory_mask: Optional[Tensor] = None,
|
111 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
112 |
+
pos: Optional[Tensor] = None,
|
113 |
+
query_pos: Optional[Tensor] = None):
|
114 |
+
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
115 |
+
key=self.with_pos_embed(memory, pos),
|
116 |
+
value=memory, attn_mask=memory_mask,
|
117 |
+
key_padding_mask=memory_key_padding_mask)
|
118 |
+
tgt = tgt + self.dropout(tgt2)
|
119 |
+
tgt = self.norm(tgt)
|
120 |
+
return tgt, avg_attn
|
121 |
+
|
122 |
+
def forward_pre(self, tgt, memory,
|
123 |
+
memory_mask: Optional[Tensor] = None,
|
124 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
125 |
+
pos: Optional[Tensor] = None,
|
126 |
+
query_pos: Optional[Tensor] = None):
|
127 |
+
tgt2 = self.norm(tgt)
|
128 |
+
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
129 |
+
key=self.with_pos_embed(memory, pos),
|
130 |
+
value=memory, attn_mask=memory_mask,
|
131 |
+
key_padding_mask=memory_key_padding_mask)
|
132 |
+
tgt = tgt + self.dropout(tgt2)
|
133 |
+
|
134 |
+
return tgt, avg_attn
|
135 |
+
|
136 |
+
def forward(self, tgt, memory,
|
137 |
+
memory_mask: Optional[Tensor] = None,
|
138 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
139 |
+
pos: Optional[Tensor] = None,
|
140 |
+
query_pos: Optional[Tensor] = None):
|
141 |
+
if self.normalize_before:
|
142 |
+
return self.forward_pre(tgt, memory, memory_mask,
|
143 |
+
memory_key_padding_mask, pos, query_pos)
|
144 |
+
return self.forward_post(tgt, memory, memory_mask,
|
145 |
+
memory_key_padding_mask, pos, query_pos)
|
146 |
+
|
147 |
+
|
148 |
+
class FFNLayer(nn.Module):
|
149 |
+
|
150 |
+
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
|
151 |
+
activation="relu", normalize_before=False):
|
152 |
+
super().__init__()
|
153 |
+
# Implementation of Feedforward model
|
154 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
155 |
+
self.dropout = nn.Dropout(dropout)
|
156 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
157 |
+
|
158 |
+
self.norm = nn.LayerNorm(d_model)
|
159 |
+
|
160 |
+
self.activation = _get_activation_fn(activation)
|
161 |
+
self.normalize_before = normalize_before
|
162 |
+
|
163 |
+
self._reset_parameters()
|
164 |
+
|
165 |
+
def _reset_parameters(self):
|
166 |
+
for p in self.parameters():
|
167 |
+
if p.dim() > 1:
|
168 |
+
nn.init.xavier_uniform_(p)
|
169 |
+
|
170 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
171 |
+
return tensor if pos is None else tensor + pos
|
172 |
+
|
173 |
+
def forward_post(self, tgt):
|
174 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
175 |
+
tgt = tgt + self.dropout(tgt2)
|
176 |
+
tgt = self.norm(tgt)
|
177 |
+
return tgt
|
178 |
+
|
179 |
+
def forward_pre(self, tgt):
|
180 |
+
tgt2 = self.norm(tgt)
|
181 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
182 |
+
tgt = tgt + self.dropout(tgt2)
|
183 |
+
return tgt
|
184 |
+
|
185 |
+
def forward(self, tgt):
|
186 |
+
if self.normalize_before:
|
187 |
+
return self.forward_pre(tgt)
|
188 |
+
return self.forward_post(tgt)
|
189 |
+
|
190 |
+
|
191 |
+
def _get_activation_fn(activation):
|
192 |
+
"""Return an activation function given a string"""
|
193 |
+
if activation == "relu":
|
194 |
+
return F.relu
|
195 |
+
if activation == "gelu":
|
196 |
+
return F.gelu
|
197 |
+
if activation == "glu":
|
198 |
+
return F.glu
|
199 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
200 |
+
|
201 |
+
|
202 |
+
class MLP(nn.Module):
|
203 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
204 |
+
|
205 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
206 |
+
super().__init__()
|
207 |
+
self.num_layers = num_layers
|
208 |
+
h = [hidden_dim] * (num_layers - 1)
|
209 |
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
210 |
+
|
211 |
+
def forward(self, x):
|
212 |
+
for i, layer in enumerate(self.layers):
|
213 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
214 |
+
return x
|
215 |
+
|
216 |
+
|
217 |
+
class MultiScaleMaskedTransformerDecoder(nn.Module):
|
218 |
+
|
219 |
+
_version = 2
|
220 |
+
|
221 |
+
@configurable
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
lang_encoder: nn.Module,
|
225 |
+
in_channels,
|
226 |
+
mask_classification=True,
|
227 |
+
*,
|
228 |
+
hidden_dim: int,
|
229 |
+
dim_proj: int,
|
230 |
+
num_queries: int,
|
231 |
+
contxt_len: int,
|
232 |
+
nheads: int,
|
233 |
+
dim_feedforward: int,
|
234 |
+
dec_layers: int,
|
235 |
+
pre_norm: bool,
|
236 |
+
mask_dim: int,
|
237 |
+
task_switch: dict,
|
238 |
+
captioning_step: int,
|
239 |
+
enforce_input_project: bool,
|
240 |
+
):
|
241 |
+
"""
|
242 |
+
NOTE: this interface is experimental.
|
243 |
+
Args:
|
244 |
+
in_channels: channels of the input features
|
245 |
+
mask_classification: whether to add mask classifier or not
|
246 |
+
num_classes: number of classes
|
247 |
+
hidden_dim: Transformer feature dimension
|
248 |
+
num_queries: number of queries
|
249 |
+
nheads: number of heads
|
250 |
+
dim_feedforward: feature dimension in feedforward network
|
251 |
+
enc_layers: number of Transformer encoder layers
|
252 |
+
dec_layers: number of Transformer decoder layers
|
253 |
+
pre_norm: whether to use pre-LayerNorm or not
|
254 |
+
mask_dim: mask feature dimension
|
255 |
+
enforce_input_project: add input project 1x1 conv even if input
|
256 |
+
channels and hidden dim is identical
|
257 |
+
"""
|
258 |
+
super().__init__()
|
259 |
+
assert mask_classification, "Only support mask classification model"
|
260 |
+
self.mask_classification = mask_classification
|
261 |
+
|
262 |
+
# positional encoding
|
263 |
+
N_steps = hidden_dim // 2
|
264 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
265 |
+
|
266 |
+
# define Transformer decoder here
|
267 |
+
self.num_heads = nheads
|
268 |
+
self.num_layers = dec_layers
|
269 |
+
self.contxt_len = contxt_len
|
270 |
+
self.transformer_self_attention_layers = nn.ModuleList()
|
271 |
+
self.transformer_cross_attention_layers = nn.ModuleList()
|
272 |
+
self.transformer_ffn_layers = nn.ModuleList()
|
273 |
+
|
274 |
+
for _ in range(self.num_layers):
|
275 |
+
self.transformer_self_attention_layers.append(
|
276 |
+
SelfAttentionLayer(
|
277 |
+
d_model=hidden_dim,
|
278 |
+
nhead=nheads,
|
279 |
+
dropout=0.0,
|
280 |
+
normalize_before=pre_norm,
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
self.transformer_cross_attention_layers.append(
|
285 |
+
CrossAttentionLayer(
|
286 |
+
d_model=hidden_dim,
|
287 |
+
nhead=nheads,
|
288 |
+
dropout=0.0,
|
289 |
+
normalize_before=pre_norm,
|
290 |
+
)
|
291 |
+
)
|
292 |
+
|
293 |
+
self.transformer_ffn_layers.append(
|
294 |
+
FFNLayer(
|
295 |
+
d_model=hidden_dim,
|
296 |
+
dim_feedforward=dim_feedforward,
|
297 |
+
dropout=0.0,
|
298 |
+
normalize_before=pre_norm,
|
299 |
+
)
|
300 |
+
)
|
301 |
+
|
302 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
303 |
+
|
304 |
+
self.num_queries = num_queries
|
305 |
+
# learnable query features
|
306 |
+
self.query_feat = nn.Embedding(num_queries, hidden_dim)
|
307 |
+
# learnable query p.e.
|
308 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
309 |
+
|
310 |
+
# level embedding (we always use 3 scales)
|
311 |
+
self.num_feature_levels = 3
|
312 |
+
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
|
313 |
+
self.input_proj = nn.ModuleList()
|
314 |
+
|
315 |
+
for _ in range(self.num_feature_levels):
|
316 |
+
if in_channels != hidden_dim or enforce_input_project:
|
317 |
+
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
|
318 |
+
weight_init.c2_xavier_fill(self.input_proj[-1])
|
319 |
+
else:
|
320 |
+
self.input_proj.append(nn.Sequential())
|
321 |
+
|
322 |
+
self.task_switch = task_switch
|
323 |
+
|
324 |
+
# output FFNs
|
325 |
+
self.lang_encoder = lang_encoder
|
326 |
+
if self.task_switch['mask']:
|
327 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
328 |
+
|
329 |
+
self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
|
330 |
+
trunc_normal_(self.class_embed, std=.02)
|
331 |
+
|
332 |
+
if task_switch['bbox']:
|
333 |
+
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
334 |
+
|
335 |
+
# Caption Project and query
|
336 |
+
if task_switch['captioning']:
|
337 |
+
self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
|
338 |
+
trunc_normal_(self.caping_embed, std=.02)
|
339 |
+
# self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
|
340 |
+
self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
|
341 |
+
self.captioning_step = captioning_step
|
342 |
+
|
343 |
+
# register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
|
344 |
+
self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
|
345 |
+
self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
|
346 |
+
self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
|
347 |
+
self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
|
348 |
+
self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
|
349 |
+
self.register_buffer("self_attn_mask", self_attn_mask)
|
350 |
+
|
351 |
+
|
352 |
+
@classmethod
|
353 |
+
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
|
354 |
+
ret = {}
|
355 |
+
|
356 |
+
ret["lang_encoder"] = lang_encoder
|
357 |
+
ret["in_channels"] = in_channels
|
358 |
+
ret["mask_classification"] = mask_classification
|
359 |
+
|
360 |
+
enc_cfg = cfg['MODEL']['ENCODER']
|
361 |
+
dec_cfg = cfg['MODEL']['DECODER']
|
362 |
+
|
363 |
+
ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
|
364 |
+
ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
|
365 |
+
ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
|
366 |
+
ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
|
367 |
+
|
368 |
+
# Transformer parameters:
|
369 |
+
ret["nheads"] = dec_cfg['NHEADS']
|
370 |
+
ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
|
371 |
+
|
372 |
+
# NOTE: because we add learnable query features which requires supervision,
|
373 |
+
# we add minus 1 to decoder layers to be consistent with our loss
|
374 |
+
# implementation: that is, number of auxiliary losses is always
|
375 |
+
# equal to number of decoder layers. With learnable query features, the number of
|
376 |
+
# auxiliary losses equals number of decoders plus 1.
|
377 |
+
assert dec_cfg['DEC_LAYERS'] >= 1
|
378 |
+
ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
|
379 |
+
ret["pre_norm"] = dec_cfg['PRE_NORM']
|
380 |
+
ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
|
381 |
+
ret["mask_dim"] = enc_cfg['MASK_DIM']
|
382 |
+
|
383 |
+
ret["task_switch"] = extra['task_switch']
|
384 |
+
ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
|
385 |
+
|
386 |
+
return ret
|
387 |
+
|
388 |
+
def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
|
389 |
+
if task == 'captioning_infer':
|
390 |
+
return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
|
391 |
+
# x is a list of multi-scale feature
|
392 |
+
assert len(x) == self.num_feature_levels
|
393 |
+
src = []
|
394 |
+
pos = []
|
395 |
+
size_list = []
|
396 |
+
|
397 |
+
# disable mask, it does not affect performance
|
398 |
+
del mask
|
399 |
+
for i in range(self.num_feature_levels):
|
400 |
+
size_list.append(x[i].shape[-2:])
|
401 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
402 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
403 |
+
|
404 |
+
# flatten NxCxHxW to HWxNxC
|
405 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
406 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
407 |
+
|
408 |
+
_, bs, _ = src[0].shape
|
409 |
+
|
410 |
+
# QxNxC
|
411 |
+
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
412 |
+
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
413 |
+
|
414 |
+
predictions_class = []
|
415 |
+
predictions_mask = []
|
416 |
+
predictions_bbox = []
|
417 |
+
predictions_caption = []
|
418 |
+
predictions_captioning = []
|
419 |
+
|
420 |
+
self_tgt_mask = None
|
421 |
+
if self.training and task == 'vlp' and self.task_switch['captioning']:
|
422 |
+
# output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
|
423 |
+
caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
|
424 |
+
_caping_lang_embed = caping_lang_embed.detach().clone()
|
425 |
+
output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
|
426 |
+
caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
|
427 |
+
query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
|
428 |
+
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
|
429 |
+
elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
430 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
431 |
+
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
|
432 |
+
grounding_tokens = extra['grounding_tokens']
|
433 |
+
_grounding_tokens = grounding_tokens.detach().clone()
|
434 |
+
# initialize with negative attention at the beginning.
|
435 |
+
pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
|
436 |
+
pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
|
437 |
+
pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
|
438 |
+
self_tgt_mask = pad_tgt_mask
|
439 |
+
output = torch.cat((output, output[:-1]), dim=0)
|
440 |
+
query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
|
441 |
+
else:
|
442 |
+
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
|
443 |
+
|
444 |
+
# prediction heads on learnable query features
|
445 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
|
446 |
+
attn_mask = results["attn_mask"]
|
447 |
+
predictions_class.append(results["outputs_class"])
|
448 |
+
predictions_mask.append(results["outputs_mask"])
|
449 |
+
predictions_bbox.append(results["outputs_bbox"])
|
450 |
+
predictions_caption.append(results["outputs_caption"])
|
451 |
+
predictions_captioning.append(results["outputs_captionting"])
|
452 |
+
|
453 |
+
for i in range(self.num_layers):
|
454 |
+
level_index = i % self.num_feature_levels
|
455 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
456 |
+
|
457 |
+
if self.training and task == 'vlp' and self.task_switch['captioning']:
|
458 |
+
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
|
459 |
+
# attention: cross-attention first
|
460 |
+
output, avg_attn = self.transformer_cross_attention_layers[i](
|
461 |
+
output, src[level_index],
|
462 |
+
memory_mask=attn_mask,
|
463 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
464 |
+
pos=pos[level_index], query_pos=query_embed
|
465 |
+
)
|
466 |
+
|
467 |
+
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
468 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
469 |
+
output = torch.cat((output, _grounding_tokens), dim=0)
|
470 |
+
query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
|
471 |
+
|
472 |
+
output = self.transformer_self_attention_layers[i](
|
473 |
+
output, tgt_mask=self_tgt_mask,
|
474 |
+
tgt_key_padding_mask=None,
|
475 |
+
query_pos=query_embed
|
476 |
+
)
|
477 |
+
|
478 |
+
# FFN
|
479 |
+
output = self.transformer_ffn_layers[i](
|
480 |
+
output
|
481 |
+
)
|
482 |
+
|
483 |
+
if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
|
484 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
485 |
+
_grounding_tokens = output[-len(_grounding_tokens):]
|
486 |
+
output = output[:-len(_grounding_tokens)]
|
487 |
+
query_embed = query_embed[:-len(_grounding_tokens)]
|
488 |
+
|
489 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
|
490 |
+
attn_mask = results["attn_mask"]
|
491 |
+
predictions_class.append(results["outputs_class"])
|
492 |
+
predictions_mask.append(results["outputs_mask"])
|
493 |
+
predictions_bbox.append(results["outputs_bbox"])
|
494 |
+
predictions_caption.append(results["outputs_caption"])
|
495 |
+
predictions_captioning.append(results["outputs_captionting"])
|
496 |
+
|
497 |
+
assert len(predictions_class) == self.num_layers + 1
|
498 |
+
if task == 'vlp':
|
499 |
+
out = {'pred_captionings': predictions_captioning[-1],
|
500 |
+
'pred_captions': predictions_caption[-1],
|
501 |
+
'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
|
502 |
+
return out
|
503 |
+
else:
|
504 |
+
out = {
|
505 |
+
'pred_logits': predictions_class[-1],
|
506 |
+
'pred_masks': predictions_mask[-1],
|
507 |
+
'pred_boxes': predictions_bbox[-1],
|
508 |
+
'pred_captions': predictions_caption[-1],
|
509 |
+
'aux_outputs': self._set_aux_loss(
|
510 |
+
predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
|
511 |
+
)
|
512 |
+
}
|
513 |
+
return out
|
514 |
+
|
515 |
+
def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
|
516 |
+
# x is a list of multi-scale feature
|
517 |
+
assert len(x) == self.num_feature_levels
|
518 |
+
src = []
|
519 |
+
pos = []
|
520 |
+
size_list = []
|
521 |
+
|
522 |
+
# disable mask, it does not affect performance
|
523 |
+
del mask
|
524 |
+
for i in range(self.num_feature_levels):
|
525 |
+
size_list.append(x[i].shape[-2:])
|
526 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
527 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
528 |
+
|
529 |
+
# flatten NxCxHxW to HWxNxC
|
530 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
531 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
532 |
+
|
533 |
+
_, bs, _ = src[0].shape
|
534 |
+
|
535 |
+
# QxNxC
|
536 |
+
query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
537 |
+
query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
538 |
+
caping_lang_token = extra['start_token'].repeat(bs, 1)
|
539 |
+
start_id = 0
|
540 |
+
if 'token' in extra:
|
541 |
+
caping_lang_token[:,:len(extra['token'][0])] = extra['token']
|
542 |
+
start_id = len(extra['token'][0])-1
|
543 |
+
# query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
|
544 |
+
pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
|
545 |
+
# prepare token embedding for evaluation
|
546 |
+
token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
|
547 |
+
# token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
|
548 |
+
|
549 |
+
for cap_idx in range(start_id, self.captioning_step):
|
550 |
+
caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
|
551 |
+
output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
|
552 |
+
caping_lang_embed += pos_embed_caping
|
553 |
+
query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
|
554 |
+
# output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
|
555 |
+
|
556 |
+
# prediction heads on learnable query features
|
557 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
|
558 |
+
attn_mask = results["attn_mask"]
|
559 |
+
|
560 |
+
for i in range(self.num_layers):
|
561 |
+
level_index = i % self.num_feature_levels
|
562 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
563 |
+
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
|
564 |
+
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
|
565 |
+
|
566 |
+
if extra['captioning_mask'] is not None:
|
567 |
+
bs,nq,wh = attn_mask.shape
|
568 |
+
assert bs==self.num_heads, "Only support single image referring captioning."
|
569 |
+
cap_mask = extra['captioning_mask']
|
570 |
+
attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
|
571 |
+
cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
|
572 |
+
attn_mask[:,self.num_queries:, cap_mask] = True
|
573 |
+
attn_mask = attn_mask.reshape(bs,nq,wh)
|
574 |
+
|
575 |
+
# attention: cross-attention first
|
576 |
+
output, avg_attn = self.transformer_cross_attention_layers[i](
|
577 |
+
output, src[level_index],
|
578 |
+
memory_mask=attn_mask,
|
579 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
580 |
+
pos=pos[level_index], query_pos=query_embed
|
581 |
+
)
|
582 |
+
|
583 |
+
output = self.transformer_self_attention_layers[i](
|
584 |
+
output, tgt_mask=self_tgt_mask,
|
585 |
+
tgt_key_padding_mask=None,
|
586 |
+
query_pos=query_embed
|
587 |
+
)
|
588 |
+
|
589 |
+
# FFN
|
590 |
+
output = self.transformer_ffn_layers[i](
|
591 |
+
output
|
592 |
+
)
|
593 |
+
|
594 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
|
595 |
+
attn_mask = results["attn_mask"]
|
596 |
+
|
597 |
+
pred_captions_gen = results['outputs_captionting']
|
598 |
+
# pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
|
599 |
+
pred_captions_gen = pred_captions_gen @ token_embs.t()
|
600 |
+
caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
|
601 |
+
|
602 |
+
texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
|
603 |
+
texts_new = []
|
604 |
+
|
605 |
+
for x in texts:
|
606 |
+
x = x.split('<|endoftext|>')[0]
|
607 |
+
x = x.replace('<|endoftext|>','')
|
608 |
+
x = x.replace('<|startoftext|>','')
|
609 |
+
x = x.strip()
|
610 |
+
texts_new.append(x)
|
611 |
+
|
612 |
+
out = {'pred_captionings': caping_lang_token,
|
613 |
+
'pred_texts': texts_new}
|
614 |
+
return out
|
615 |
+
|
616 |
+
|
617 |
+
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
|
618 |
+
decoder_output = self.decoder_norm(output)
|
619 |
+
decoder_output = decoder_output.transpose(0, 1)
|
620 |
+
|
621 |
+
# extract image captioning token from decoder output.
|
622 |
+
if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
|
623 |
+
outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
|
624 |
+
else:
|
625 |
+
outputs_captionting = None
|
626 |
+
|
627 |
+
# recompute class token output.
|
628 |
+
norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
|
629 |
+
obj_token = norm_decoder_output[:,:self.num_queries-1]
|
630 |
+
cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
|
631 |
+
|
632 |
+
sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
|
633 |
+
cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
|
634 |
+
|
635 |
+
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
636 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
637 |
+
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
|
638 |
+
else:
|
639 |
+
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
|
640 |
+
|
641 |
+
# compute class, mask and bbox.
|
642 |
+
class_embed = decoder_output @ self.class_embed
|
643 |
+
# HACK do not compute similarity if mask is not on
|
644 |
+
outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
|
645 |
+
|
646 |
+
if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
|
647 |
+
mask_embed = self.mask_embed(decoder_output)
|
648 |
+
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
649 |
+
|
650 |
+
# NOTE: prediction is of higher-resolution
|
651 |
+
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
|
652 |
+
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
|
653 |
+
|
654 |
+
# must use bool type
|
655 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
656 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
657 |
+
attn_mask = attn_mask.detach()
|
658 |
+
|
659 |
+
# NOTE: fill False for cls token (JY)
|
660 |
+
attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
|
661 |
+
else:
|
662 |
+
outputs_mask = None
|
663 |
+
attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
|
664 |
+
|
665 |
+
outputs_bbox = [None for i in range(len(decoder_output))]
|
666 |
+
if self.task_switch['bbox']:
|
667 |
+
outputs_bbox = self.bbox_embed(decoder_output)
|
668 |
+
|
669 |
+
outputs_caption = None
|
670 |
+
if self.task_switch['caption']:
|
671 |
+
outputs_caption = class_embed
|
672 |
+
|
673 |
+
|
674 |
+
results = {
|
675 |
+
"outputs_class": outputs_class,
|
676 |
+
"outputs_mask": outputs_mask,
|
677 |
+
"outputs_bbox": outputs_bbox,
|
678 |
+
"attn_mask": attn_mask,
|
679 |
+
"outputs_caption": outputs_caption,
|
680 |
+
"outputs_captionting": outputs_captionting,
|
681 |
+
}
|
682 |
+
return results
|
683 |
+
|
684 |
+
@torch.jit.unused
|
685 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
|
686 |
+
# this is a workaround to make torchscript happy, as torchscript
|
687 |
+
# doesn't support dictionary with non-homogeneous values, such
|
688 |
+
# as a dict having both a Tensor and a list.
|
689 |
+
if self.mask_classification:
|
690 |
+
return [
|
691 |
+
{"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
|
692 |
+
for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
|
693 |
+
]
|
694 |
+
else:
|
695 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
696 |
+
|
697 |
+
|
698 |
+
@register_decoder
|
699 |
+
def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
|
700 |
+
return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
|
xdecoder/body/decoder/xdecoder2.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
|
4 |
+
# --------------------------------------------------------
|
5 |
+
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
|
6 |
+
# Copyright (c) 2022 Microsoft
|
7 |
+
# Licensed under The MIT License [see LICENSE for details]
|
8 |
+
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
|
9 |
+
# --------------------------------------------------------
|
10 |
+
|
11 |
+
|
12 |
+
import logging
|
13 |
+
from typing import Optional
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn, Tensor
|
17 |
+
from torch.nn import functional as F
|
18 |
+
|
19 |
+
from timm.models.layers import trunc_normal_
|
20 |
+
from detectron2.layers import Conv2d
|
21 |
+
import fvcore.nn.weight_init as weight_init
|
22 |
+
|
23 |
+
from .registry import register_decoder
|
24 |
+
from ...utils import configurable
|
25 |
+
from ...modules import PositionEmbeddingSine
|
26 |
+
|
27 |
+
|
28 |
+
class SelfAttentionLayer(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
31 |
+
activation="relu", normalize_before=False):
|
32 |
+
super().__init__()
|
33 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
34 |
+
|
35 |
+
self.norm = nn.LayerNorm(d_model)
|
36 |
+
self.dropout = nn.Dropout(dropout)
|
37 |
+
|
38 |
+
self.activation = _get_activation_fn(activation)
|
39 |
+
self.normalize_before = normalize_before
|
40 |
+
|
41 |
+
self._reset_parameters()
|
42 |
+
|
43 |
+
def _reset_parameters(self):
|
44 |
+
for p in self.parameters():
|
45 |
+
if p.dim() > 1:
|
46 |
+
nn.init.xavier_uniform_(p)
|
47 |
+
|
48 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
49 |
+
return tensor if pos is None else tensor + pos
|
50 |
+
|
51 |
+
def forward_post(self, tgt,
|
52 |
+
tgt_mask: Optional[Tensor] = None,
|
53 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
54 |
+
query_pos: Optional[Tensor] = None):
|
55 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
56 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
57 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
58 |
+
tgt = tgt + self.dropout(tgt2)
|
59 |
+
tgt = self.norm(tgt)
|
60 |
+
|
61 |
+
return tgt
|
62 |
+
|
63 |
+
def forward_pre(self, tgt,
|
64 |
+
tgt_mask: Optional[Tensor] = None,
|
65 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
66 |
+
query_pos: Optional[Tensor] = None):
|
67 |
+
tgt2 = self.norm(tgt)
|
68 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
69 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
70 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
71 |
+
tgt = tgt + self.dropout(tgt2)
|
72 |
+
|
73 |
+
return tgt
|
74 |
+
|
75 |
+
def forward(self, tgt,
|
76 |
+
tgt_mask: Optional[Tensor] = None,
|
77 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
78 |
+
query_pos: Optional[Tensor] = None):
|
79 |
+
if self.normalize_before:
|
80 |
+
return self.forward_pre(tgt, tgt_mask,
|
81 |
+
tgt_key_padding_mask, query_pos)
|
82 |
+
return self.forward_post(tgt, tgt_mask,
|
83 |
+
tgt_key_padding_mask, query_pos)
|
84 |
+
|
85 |
+
|
86 |
+
class CrossAttentionLayer(nn.Module):
|
87 |
+
|
88 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
89 |
+
activation="relu", normalize_before=False):
|
90 |
+
super().__init__()
|
91 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
92 |
+
|
93 |
+
self.norm = nn.LayerNorm(d_model)
|
94 |
+
self.dropout = nn.Dropout(dropout)
|
95 |
+
|
96 |
+
self.activation = _get_activation_fn(activation)
|
97 |
+
self.normalize_before = normalize_before
|
98 |
+
|
99 |
+
self._reset_parameters()
|
100 |
+
|
101 |
+
def _reset_parameters(self):
|
102 |
+
for p in self.parameters():
|
103 |
+
if p.dim() > 1:
|
104 |
+
nn.init.xavier_uniform_(p)
|
105 |
+
|
106 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
107 |
+
return tensor if pos is None else tensor + pos
|
108 |
+
|
109 |
+
def forward_post(self, tgt, memory,
|
110 |
+
memory_mask: Optional[Tensor] = None,
|
111 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
112 |
+
pos: Optional[Tensor] = None,
|
113 |
+
query_pos: Optional[Tensor] = None):
|
114 |
+
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
115 |
+
key=self.with_pos_embed(memory, pos),
|
116 |
+
value=memory, attn_mask=memory_mask,
|
117 |
+
key_padding_mask=memory_key_padding_mask)
|
118 |
+
tgt = tgt + self.dropout(tgt2)
|
119 |
+
tgt = self.norm(tgt)
|
120 |
+
return tgt, avg_attn
|
121 |
+
|
122 |
+
def forward_pre(self, tgt, memory,
|
123 |
+
memory_mask: Optional[Tensor] = None,
|
124 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
125 |
+
pos: Optional[Tensor] = None,
|
126 |
+
query_pos: Optional[Tensor] = None):
|
127 |
+
tgt2 = self.norm(tgt)
|
128 |
+
tgt2, avg_attn = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
129 |
+
key=self.with_pos_embed(memory, pos),
|
130 |
+
value=memory, attn_mask=memory_mask,
|
131 |
+
key_padding_mask=memory_key_padding_mask)
|
132 |
+
tgt = tgt + self.dropout(tgt2)
|
133 |
+
|
134 |
+
return tgt, avg_attn
|
135 |
+
|
136 |
+
def forward(self, tgt, memory,
|
137 |
+
memory_mask: Optional[Tensor] = None,
|
138 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
139 |
+
pos: Optional[Tensor] = None,
|
140 |
+
query_pos: Optional[Tensor] = None):
|
141 |
+
if self.normalize_before:
|
142 |
+
return self.forward_pre(tgt, memory, memory_mask,
|
143 |
+
memory_key_padding_mask, pos, query_pos)
|
144 |
+
return self.forward_post(tgt, memory, memory_mask,
|
145 |
+
memory_key_padding_mask, pos, query_pos)
|
146 |
+
|
147 |
+
|
148 |
+
class FFNLayer(nn.Module):
|
149 |
+
|
150 |
+
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
|
151 |
+
activation="relu", normalize_before=False):
|
152 |
+
super().__init__()
|
153 |
+
# Implementation of Feedforward model
|
154 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
155 |
+
self.dropout = nn.Dropout(dropout)
|
156 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
157 |
+
|
158 |
+
self.norm = nn.LayerNorm(d_model)
|
159 |
+
|
160 |
+
self.activation = _get_activation_fn(activation)
|
161 |
+
self.normalize_before = normalize_before
|
162 |
+
|
163 |
+
self._reset_parameters()
|
164 |
+
|
165 |
+
def _reset_parameters(self):
|
166 |
+
for p in self.parameters():
|
167 |
+
if p.dim() > 1:
|
168 |
+
nn.init.xavier_uniform_(p)
|
169 |
+
|
170 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
171 |
+
return tensor if pos is None else tensor + pos
|
172 |
+
|
173 |
+
def forward_post(self, tgt):
|
174 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
175 |
+
tgt = tgt + self.dropout(tgt2)
|
176 |
+
tgt = self.norm(tgt)
|
177 |
+
return tgt
|
178 |
+
|
179 |
+
def forward_pre(self, tgt):
|
180 |
+
tgt2 = self.norm(tgt)
|
181 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
182 |
+
tgt = tgt + self.dropout(tgt2)
|
183 |
+
return tgt
|
184 |
+
|
185 |
+
def forward(self, tgt):
|
186 |
+
if self.normalize_before:
|
187 |
+
return self.forward_pre(tgt)
|
188 |
+
return self.forward_post(tgt)
|
189 |
+
|
190 |
+
|
191 |
+
def _get_activation_fn(activation):
|
192 |
+
"""Return an activation function given a string"""
|
193 |
+
if activation == "relu":
|
194 |
+
return F.relu
|
195 |
+
if activation == "gelu":
|
196 |
+
return F.gelu
|
197 |
+
if activation == "glu":
|
198 |
+
return F.glu
|
199 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
200 |
+
|
201 |
+
|
202 |
+
class MLP(nn.Module):
|
203 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
204 |
+
|
205 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
206 |
+
super().__init__()
|
207 |
+
self.num_layers = num_layers
|
208 |
+
h = [hidden_dim] * (num_layers - 1)
|
209 |
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
210 |
+
|
211 |
+
def forward(self, x):
|
212 |
+
for i, layer in enumerate(self.layers):
|
213 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
214 |
+
return x
|
215 |
+
|
216 |
+
|
217 |
+
class MultiScaleMaskedTransformerDecoder(nn.Module):
|
218 |
+
|
219 |
+
_version = 2
|
220 |
+
|
221 |
+
@configurable
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
lang_encoder: nn.Module,
|
225 |
+
in_channels,
|
226 |
+
mask_classification=True,
|
227 |
+
*,
|
228 |
+
hidden_dim: int,
|
229 |
+
dim_proj: int,
|
230 |
+
num_queries: int,
|
231 |
+
contxt_len: int,
|
232 |
+
nheads: int,
|
233 |
+
dim_feedforward: int,
|
234 |
+
dec_layers: int,
|
235 |
+
pre_norm: bool,
|
236 |
+
mask_dim: int,
|
237 |
+
task_switch: dict,
|
238 |
+
captioning_step: int,
|
239 |
+
enforce_input_project: bool,
|
240 |
+
):
|
241 |
+
"""
|
242 |
+
NOTE: this interface is experimental.
|
243 |
+
Args:
|
244 |
+
in_channels: channels of the input features
|
245 |
+
mask_classification: whether to add mask classifier or not
|
246 |
+
num_classes: number of classes
|
247 |
+
hidden_dim: Transformer feature dimension
|
248 |
+
num_queries: number of queries
|
249 |
+
nheads: number of heads
|
250 |
+
dim_feedforward: feature dimension in feedforward network
|
251 |
+
enc_layers: number of Transformer encoder layers
|
252 |
+
dec_layers: number of Transformer decoder layers
|
253 |
+
pre_norm: whether to use pre-LayerNorm or not
|
254 |
+
mask_dim: mask feature dimension
|
255 |
+
enforce_input_project: add input project 1x1 conv even if input
|
256 |
+
channels and hidden dim is identical
|
257 |
+
"""
|
258 |
+
super().__init__()
|
259 |
+
assert mask_classification, "Only support mask classification model"
|
260 |
+
self.mask_classification = mask_classification
|
261 |
+
|
262 |
+
# positional encoding
|
263 |
+
N_steps = hidden_dim // 2
|
264 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
265 |
+
|
266 |
+
# define Transformer decoder here
|
267 |
+
self.num_heads = nheads
|
268 |
+
self.num_layers = dec_layers
|
269 |
+
self.contxt_len = contxt_len
|
270 |
+
self.transformer_self_attention_layers = nn.ModuleList()
|
271 |
+
self.transformer_cross_attention_layers = nn.ModuleList()
|
272 |
+
self.transformer_ffn_layers = nn.ModuleList()
|
273 |
+
|
274 |
+
for _ in range(self.num_layers):
|
275 |
+
self.transformer_self_attention_layers.append(
|
276 |
+
SelfAttentionLayer(
|
277 |
+
d_model=hidden_dim,
|
278 |
+
nhead=nheads,
|
279 |
+
dropout=0.0,
|
280 |
+
normalize_before=pre_norm,
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
self.transformer_cross_attention_layers.append(
|
285 |
+
CrossAttentionLayer(
|
286 |
+
d_model=hidden_dim,
|
287 |
+
nhead=nheads,
|
288 |
+
dropout=0.0,
|
289 |
+
normalize_before=pre_norm,
|
290 |
+
)
|
291 |
+
)
|
292 |
+
|
293 |
+
self.transformer_ffn_layers.append(
|
294 |
+
FFNLayer(
|
295 |
+
d_model=hidden_dim,
|
296 |
+
dim_feedforward=dim_feedforward,
|
297 |
+
dropout=0.0,
|
298 |
+
normalize_before=pre_norm,
|
299 |
+
)
|
300 |
+
)
|
301 |
+
|
302 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
303 |
+
|
304 |
+
self.num_queries = num_queries
|
305 |
+
# learnable query features
|
306 |
+
self.query_feat = nn.Embedding(num_queries, hidden_dim)
|
307 |
+
# learnable query p.e.
|
308 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
309 |
+
|
310 |
+
# level embedding (we always use 3 scales)
|
311 |
+
self.num_feature_levels = 3
|
312 |
+
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
|
313 |
+
self.input_proj = nn.ModuleList()
|
314 |
+
|
315 |
+
for _ in range(self.num_feature_levels):
|
316 |
+
if in_channels != hidden_dim or enforce_input_project:
|
317 |
+
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
|
318 |
+
weight_init.c2_xavier_fill(self.input_proj[-1])
|
319 |
+
else:
|
320 |
+
self.input_proj.append(nn.Sequential())
|
321 |
+
|
322 |
+
self.task_switch = task_switch
|
323 |
+
|
324 |
+
# output FFNs
|
325 |
+
self.lang_encoder = lang_encoder
|
326 |
+
if self.task_switch['mask']:
|
327 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
328 |
+
|
329 |
+
self.class_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
|
330 |
+
trunc_normal_(self.class_embed, std=.02)
|
331 |
+
|
332 |
+
if task_switch['bbox']:
|
333 |
+
self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
|
334 |
+
|
335 |
+
# Caption Project and query
|
336 |
+
if task_switch['captioning']:
|
337 |
+
self.caping_embed = nn.Parameter(torch.empty(hidden_dim, dim_proj))
|
338 |
+
trunc_normal_(self.caping_embed, std=.02)
|
339 |
+
self.query_feat_caping = nn.Embedding(contxt_len, hidden_dim)
|
340 |
+
# self.pos_embed_caping = nn.Embedding(contxt_len, hidden_dim)
|
341 |
+
self.captioning_step = captioning_step
|
342 |
+
|
343 |
+
# register self_attn_mask to avoid information leakage, it includes interaction between object query, class query and caping query
|
344 |
+
self_attn_mask = torch.zeros((1, num_queries + contxt_len, num_queries + contxt_len)).bool()
|
345 |
+
self_attn_mask[:, :num_queries, num_queries:] = True # object+class query does not attend with caption query.
|
346 |
+
self_attn_mask[:, num_queries:, num_queries:] = torch.triu(torch.ones((1, contxt_len, contxt_len)), diagonal=1).bool() # caption query only attend with previous token.
|
347 |
+
self_attn_mask[:, :num_queries-1, num_queries-1:num_queries] = True # object query does not attend with class query.
|
348 |
+
self_attn_mask[:, num_queries-1:num_queries, :num_queries-1] = True # class query does not attend with object query.
|
349 |
+
self.register_buffer("self_attn_mask", self_attn_mask)
|
350 |
+
|
351 |
+
|
352 |
+
@classmethod
|
353 |
+
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification, extra):
|
354 |
+
ret = {}
|
355 |
+
|
356 |
+
ret["lang_encoder"] = lang_encoder
|
357 |
+
ret["in_channels"] = in_channels
|
358 |
+
ret["mask_classification"] = mask_classification
|
359 |
+
|
360 |
+
enc_cfg = cfg['MODEL']['ENCODER']
|
361 |
+
dec_cfg = cfg['MODEL']['DECODER']
|
362 |
+
|
363 |
+
ret["hidden_dim"] = dec_cfg['HIDDEN_DIM']
|
364 |
+
ret["dim_proj"] = cfg['MODEL']['DIM_PROJ']
|
365 |
+
ret["num_queries"] = dec_cfg['NUM_OBJECT_QUERIES']
|
366 |
+
ret["contxt_len"] = cfg['MODEL']['TEXT']['CONTEXT_LENGTH']
|
367 |
+
|
368 |
+
# Transformer parameters:
|
369 |
+
ret["nheads"] = dec_cfg['NHEADS']
|
370 |
+
ret["dim_feedforward"] = dec_cfg['DIM_FEEDFORWARD']
|
371 |
+
|
372 |
+
# NOTE: because we add learnable query features which requires supervision,
|
373 |
+
# we add minus 1 to decoder layers to be consistent with our loss
|
374 |
+
# implementation: that is, number of auxiliary losses is always
|
375 |
+
# equal to number of decoder layers. With learnable query features, the number of
|
376 |
+
# auxiliary losses equals number of decoders plus 1.
|
377 |
+
assert dec_cfg['DEC_LAYERS'] >= 1
|
378 |
+
ret["dec_layers"] = dec_cfg['DEC_LAYERS'] - 1
|
379 |
+
ret["pre_norm"] = dec_cfg['PRE_NORM']
|
380 |
+
ret["enforce_input_project"] = dec_cfg['ENFORCE_INPUT_PROJ']
|
381 |
+
ret["mask_dim"] = enc_cfg['MASK_DIM']
|
382 |
+
|
383 |
+
ret["task_switch"] = extra['task_switch']
|
384 |
+
ret["captioning_step"] = dec_cfg['CAPTIONING'].get('STEP', 50)
|
385 |
+
|
386 |
+
return ret
|
387 |
+
|
388 |
+
def forward(self, x, mask_features, mask=None, target_queries=None, target_vlp=None, task='seg', extra={}):
|
389 |
+
if task == 'captioning_infer':
|
390 |
+
return self.forward_captioning(x, mask_features, mask=mask, target_queries=target_queries, target_vlp=target_vlp, task=task, extra=extra)
|
391 |
+
# x is a list of multi-scale feature
|
392 |
+
assert len(x) == self.num_feature_levels
|
393 |
+
src = []
|
394 |
+
pos = []
|
395 |
+
size_list = []
|
396 |
+
|
397 |
+
# disable mask, it does not affect performance
|
398 |
+
del mask
|
399 |
+
for i in range(self.num_feature_levels):
|
400 |
+
size_list.append(x[i].shape[-2:])
|
401 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
402 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
403 |
+
|
404 |
+
# flatten NxCxHxW to HWxNxC
|
405 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
406 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
407 |
+
|
408 |
+
_, bs, _ = src[0].shape
|
409 |
+
|
410 |
+
# QxNxC
|
411 |
+
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
412 |
+
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
413 |
+
|
414 |
+
predictions_class = []
|
415 |
+
predictions_mask = []
|
416 |
+
predictions_bbox = []
|
417 |
+
predictions_caption = []
|
418 |
+
predictions_captioning = []
|
419 |
+
|
420 |
+
self_tgt_mask = None
|
421 |
+
if self.training and task == 'vlp' and self.task_switch['captioning']:
|
422 |
+
output = torch.cat((output, self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)), dim=0) # concat object query, class token and caption token.
|
423 |
+
caping_lang_embed = torch.cat([caption['caption_tokens'] for caption in target_vlp], dim=0).transpose(0, 1) # language output
|
424 |
+
# _caping_lang_embed = caping_lang_embed.detach().clone()
|
425 |
+
# output = torch.cat((output, _caping_lang_embed), dim=0) # concat object query, class token and caption token.
|
426 |
+
# caping_lang_embed += self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
|
427 |
+
query_embed = torch.cat((query_embed, caping_lang_embed), dim=0) # may not add at the beginning.
|
428 |
+
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
|
429 |
+
elif (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
430 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
431 |
+
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
|
432 |
+
grounding_tokens = extra['grounding_tokens']
|
433 |
+
_grounding_tokens = grounding_tokens.detach().clone()
|
434 |
+
# initialize with negative attention at the beginning.
|
435 |
+
pad_tgt_mask = torch.ones((1, self.num_queries + (self.num_queries-1) + len(grounding_tokens), self.num_queries + (self.num_queries-1) + len(grounding_tokens)), device=self_tgt_mask.device).bool().repeat(output.shape[1]*self.num_heads, 1, 1)
|
436 |
+
pad_tgt_mask[:,:self.num_queries,:self.num_queries] = self_tgt_mask
|
437 |
+
pad_tgt_mask[:,self.num_queries:,self.num_queries:] = False # grounding tokens could attend with eatch other
|
438 |
+
self_tgt_mask = pad_tgt_mask
|
439 |
+
output = torch.cat((output, output[:-1]), dim=0)
|
440 |
+
query_embed = torch.cat((query_embed, query_embed[:-1]), dim=0) # also pad language embdding to fix embedding
|
441 |
+
else:
|
442 |
+
self_tgt_mask = self.self_attn_mask[:,:self.num_queries,:self.num_queries].repeat(output.shape[1]*self.num_heads, 1, 1)
|
443 |
+
|
444 |
+
# prediction heads on learnable query features
|
445 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
|
446 |
+
attn_mask = results["attn_mask"]
|
447 |
+
predictions_class.append(results["outputs_class"])
|
448 |
+
predictions_mask.append(results["outputs_mask"])
|
449 |
+
predictions_bbox.append(results["outputs_bbox"])
|
450 |
+
predictions_caption.append(results["outputs_caption"])
|
451 |
+
predictions_captioning.append(results["outputs_captionting"])
|
452 |
+
|
453 |
+
for i in range(self.num_layers):
|
454 |
+
level_index = i % self.num_feature_levels
|
455 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
456 |
+
|
457 |
+
if self.training and task == 'vlp' and self.task_switch['captioning']:
|
458 |
+
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
|
459 |
+
# attention: cross-attention first
|
460 |
+
output, avg_attn = self.transformer_cross_attention_layers[i](
|
461 |
+
output, src[level_index],
|
462 |
+
memory_mask=attn_mask,
|
463 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
464 |
+
pos=pos[level_index], query_pos=query_embed
|
465 |
+
)
|
466 |
+
|
467 |
+
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
468 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
469 |
+
output = torch.cat((output, _grounding_tokens), dim=0)
|
470 |
+
query_embed = torch.cat((query_embed, grounding_tokens), dim=0)
|
471 |
+
|
472 |
+
output = self.transformer_self_attention_layers[i](
|
473 |
+
output, tgt_mask=self_tgt_mask,
|
474 |
+
tgt_key_padding_mask=None,
|
475 |
+
query_pos=query_embed
|
476 |
+
)
|
477 |
+
|
478 |
+
# FFN
|
479 |
+
output = self.transformer_ffn_layers[i](
|
480 |
+
output
|
481 |
+
)
|
482 |
+
|
483 |
+
if ((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding'] \
|
484 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
485 |
+
_grounding_tokens = output[-len(_grounding_tokens):]
|
486 |
+
output = output[:-len(_grounding_tokens)]
|
487 |
+
query_embed = query_embed[:-len(_grounding_tokens)]
|
488 |
+
|
489 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
|
490 |
+
attn_mask = results["attn_mask"]
|
491 |
+
predictions_class.append(results["outputs_class"])
|
492 |
+
predictions_mask.append(results["outputs_mask"])
|
493 |
+
predictions_bbox.append(results["outputs_bbox"])
|
494 |
+
predictions_caption.append(results["outputs_caption"])
|
495 |
+
predictions_captioning.append(results["outputs_captionting"])
|
496 |
+
|
497 |
+
assert len(predictions_class) == self.num_layers + 1
|
498 |
+
if task == 'vlp':
|
499 |
+
out = {'pred_captionings': predictions_captioning[-1],
|
500 |
+
'pred_captions': predictions_caption[-1],
|
501 |
+
'aux_outputs': [{'pred_captionings': x, 'pred_captions': y } for x, y in zip(predictions_captioning[:-1], predictions_caption[:-1])]}
|
502 |
+
return out
|
503 |
+
else:
|
504 |
+
out = {
|
505 |
+
'pred_logits': predictions_class[-1],
|
506 |
+
'pred_masks': predictions_mask[-1],
|
507 |
+
'pred_boxes': predictions_bbox[-1],
|
508 |
+
'pred_captions': predictions_caption[-1],
|
509 |
+
'aux_outputs': self._set_aux_loss(
|
510 |
+
predictions_class if self.mask_classification else None, predictions_mask, predictions_bbox, predictions_caption
|
511 |
+
)
|
512 |
+
}
|
513 |
+
return out
|
514 |
+
|
515 |
+
def forward_captioning(self, x, mask_features, mask = None, target_queries = None, target_vlp = None, task='seg', extra={}):
|
516 |
+
# x is a list of multi-scale feature
|
517 |
+
assert len(x) == self.num_feature_levels
|
518 |
+
src = []
|
519 |
+
pos = []
|
520 |
+
size_list = []
|
521 |
+
|
522 |
+
# disable mask, it does not affect performance
|
523 |
+
del mask
|
524 |
+
for i in range(self.num_feature_levels):
|
525 |
+
size_list.append(x[i].shape[-2:])
|
526 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
527 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
528 |
+
|
529 |
+
# flatten NxCxHxW to HWxNxC
|
530 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
531 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
532 |
+
|
533 |
+
_, bs, _ = src[0].shape
|
534 |
+
|
535 |
+
# QxNxC
|
536 |
+
query_embed_ = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
537 |
+
query_feat = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
538 |
+
caping_lang_token = extra['start_token'].repeat(bs, 1)
|
539 |
+
start_id = 0
|
540 |
+
if 'token' in extra:
|
541 |
+
caping_lang_token[:,:len(extra['token'][0])] = extra['token']
|
542 |
+
start_id = len(extra['token'][0])-1
|
543 |
+
query_feat_caping = self.query_feat_caping.weight.unsqueeze(1).repeat(1, bs, 1)
|
544 |
+
# pos_embed_caping = self.pos_embed_caping.weight.unsqueeze(1).repeat(1, bs, 1)
|
545 |
+
# prepare token embedding for evaluation
|
546 |
+
token_embs = self.lang_encoder.lang_encoder.token_embedding.weight
|
547 |
+
# token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7)
|
548 |
+
|
549 |
+
for cap_idx in range(start_id, self.captioning_step):
|
550 |
+
caping_lang_embed = self.lang_encoder.forward_language_token((caping_lang_token,))[0].transpose(0, 1)
|
551 |
+
# output = torch.cat((query_feat, caping_lang_embed), dim=0) # concat object query, class token and caption token.
|
552 |
+
# caping_lang_embed += pos_embed_caping
|
553 |
+
query_embed = torch.cat((query_embed_, caping_lang_embed), dim=0) # may not add at the beginning.
|
554 |
+
output = torch.cat((query_feat, query_feat_caping), dim=0) # concat object query, class token and caption token.
|
555 |
+
|
556 |
+
# prediction heads on learnable query features
|
557 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0], task=task)
|
558 |
+
attn_mask = results["attn_mask"]
|
559 |
+
|
560 |
+
for i in range(self.num_layers):
|
561 |
+
level_index = i % self.num_feature_levels
|
562 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
563 |
+
attn_mask = torch.cat((attn_mask, torch.zeros_like(attn_mask[:, :self.contxt_len, :])), dim=1)
|
564 |
+
self_tgt_mask = self.self_attn_mask.repeat(output.shape[1]*self.num_heads, 1, 1)
|
565 |
+
|
566 |
+
if extra['captioning_mask'] is not None:
|
567 |
+
bs,nq,wh = attn_mask.shape
|
568 |
+
assert bs==self.num_heads, "Only support single image referring captioning."
|
569 |
+
cap_mask = extra['captioning_mask']
|
570 |
+
attn_mask = attn_mask.reshape(bs,nq,size_list[i%3][0],size_list[i%3][1])
|
571 |
+
cap_mask = F.interpolate(cap_mask[None,].float(), size_list[i%3], mode='nearest').bool()[0,0]
|
572 |
+
attn_mask[:,self.num_queries:, cap_mask] = True
|
573 |
+
attn_mask = attn_mask.reshape(bs,nq,wh)
|
574 |
+
|
575 |
+
# attention: cross-attention first
|
576 |
+
output, avg_attn = self.transformer_cross_attention_layers[i](
|
577 |
+
output, src[level_index],
|
578 |
+
memory_mask=attn_mask,
|
579 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
580 |
+
pos=pos[level_index], query_pos=query_embed
|
581 |
+
)
|
582 |
+
|
583 |
+
output = self.transformer_self_attention_layers[i](
|
584 |
+
output, tgt_mask=self_tgt_mask,
|
585 |
+
tgt_key_padding_mask=None,
|
586 |
+
query_pos=query_embed
|
587 |
+
)
|
588 |
+
|
589 |
+
# FFN
|
590 |
+
output = self.transformer_ffn_layers[i](
|
591 |
+
output
|
592 |
+
)
|
593 |
+
|
594 |
+
results = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels], layer_id=i, task=task)
|
595 |
+
attn_mask = results["attn_mask"]
|
596 |
+
|
597 |
+
pred_captions_gen = results['outputs_captionting']
|
598 |
+
# pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7)
|
599 |
+
pred_captions_gen = pred_captions_gen @ token_embs.t()
|
600 |
+
caping_lang_token[:,cap_idx+1] = pred_captions_gen[:,cap_idx].max(-1)[1]
|
601 |
+
|
602 |
+
texts = self.lang_encoder.tokenizer.batch_decode(caping_lang_token, skip_special_tokens=False)
|
603 |
+
texts_new = []
|
604 |
+
|
605 |
+
for x in texts:
|
606 |
+
x = x.split('<|endoftext|>')[0]
|
607 |
+
x = x.replace('<|endoftext|>','')
|
608 |
+
x = x.replace('<|startoftext|>','')
|
609 |
+
x = x.strip()
|
610 |
+
texts_new.append(x)
|
611 |
+
|
612 |
+
out = {'pred_captionings': caping_lang_token,
|
613 |
+
'pred_texts': texts_new}
|
614 |
+
return out
|
615 |
+
|
616 |
+
|
617 |
+
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size, layer_id=-1, task='seg'):
|
618 |
+
decoder_output = self.decoder_norm(output)
|
619 |
+
decoder_output = decoder_output.transpose(0, 1)
|
620 |
+
|
621 |
+
# extract image captioning token from decoder output.
|
622 |
+
if self.task_switch['captioning'] and (task == 'vlp' or task == 'captioning_infer'):
|
623 |
+
outputs_captionting = decoder_output[:,self.num_queries:] @ self.caping_embed
|
624 |
+
else:
|
625 |
+
outputs_captionting = None
|
626 |
+
|
627 |
+
# recompute class token output.
|
628 |
+
norm_decoder_output = decoder_output / (decoder_output.norm(dim=-1, keepdim=True) + 1e-7)
|
629 |
+
obj_token = norm_decoder_output[:,:self.num_queries-1]
|
630 |
+
cls_token = norm_decoder_output[:,self.num_queries-1:self.num_queries]
|
631 |
+
|
632 |
+
sim = (cls_token @ obj_token.transpose(1,2)).softmax(-1)[:,0,:,None] # TODO include class token.
|
633 |
+
cls_token = (sim * decoder_output[:,:self.num_queries-1]).sum(dim=1, keepdim=True)
|
634 |
+
|
635 |
+
if (((self.training and task == 'seg') or (task == 'grounding_eval')) and self.task_switch['grounding']) \
|
636 |
+
or ((self.training and task == 'openimage') and self.task_switch['openimage']['grounding']):
|
637 |
+
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token, decoder_output[:,self.num_queries:2*self.num_queries-1]), dim=1)
|
638 |
+
else:
|
639 |
+
decoder_output = torch.cat((decoder_output[:,:self.num_queries-1], cls_token), dim=1)
|
640 |
+
|
641 |
+
# compute class, mask and bbox.
|
642 |
+
class_embed = decoder_output @ self.class_embed
|
643 |
+
# HACK do not compute similarity if mask is not on
|
644 |
+
outputs_class = self.lang_encoder.compute_similarity(class_embed, fake=(((not self.task_switch['mask']) and self.training) or (task == 'openimage')))
|
645 |
+
|
646 |
+
if self.task_switch['mask'] or self.task_switch['openimage']['mask']:
|
647 |
+
mask_embed = self.mask_embed(decoder_output)
|
648 |
+
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
649 |
+
|
650 |
+
# NOTE: prediction is of higher-resolution
|
651 |
+
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
|
652 |
+
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
|
653 |
+
|
654 |
+
# must use bool type
|
655 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
656 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
657 |
+
attn_mask = attn_mask.detach()
|
658 |
+
|
659 |
+
# NOTE: fill False for cls token (JY)
|
660 |
+
attn_mask[:, self.num_queries:self.num_queries+1].fill_(False)
|
661 |
+
else:
|
662 |
+
outputs_mask = None
|
663 |
+
attn_mask = torch.zeros((list(decoder_output.shape[:2]) + [attn_mask_target_size[0]*attn_mask_target_size[1]]), device=decoder_output.device).repeat(self.num_heads, 1, 1).bool()
|
664 |
+
|
665 |
+
outputs_bbox = [None for i in range(len(decoder_output))]
|
666 |
+
if self.task_switch['bbox']:
|
667 |
+
outputs_bbox = self.bbox_embed(decoder_output)
|
668 |
+
|
669 |
+
outputs_caption = None
|
670 |
+
if self.task_switch['caption']:
|
671 |
+
outputs_caption = class_embed
|
672 |
+
|
673 |
+
|
674 |
+
results = {
|
675 |
+
"outputs_class": outputs_class,
|
676 |
+
"outputs_mask": outputs_mask,
|
677 |
+
"outputs_bbox": outputs_bbox,
|
678 |
+
"attn_mask": attn_mask,
|
679 |
+
"outputs_caption": outputs_caption,
|
680 |
+
"outputs_captionting": outputs_captionting,
|
681 |
+
}
|
682 |
+
return results
|
683 |
+
|
684 |
+
@torch.jit.unused
|
685 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks, outputs_boxes, outputs_captions):
|
686 |
+
# this is a workaround to make torchscript happy, as torchscript
|
687 |
+
# doesn't support dictionary with non-homogeneous values, such
|
688 |
+
# as a dict having both a Tensor and a list.
|
689 |
+
if self.mask_classification:
|
690 |
+
return [
|
691 |
+
{"pred_logits": a, "pred_masks": b, "pred_boxes": c, "pred_captions": d}
|
692 |
+
for a, b, c, d in zip(outputs_class[:-1], outputs_seg_masks[:-1], outputs_boxes[:-1], outputs_captions[:-1])
|
693 |
+
]
|
694 |
+
else:
|
695 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
696 |
+
|
697 |
+
|
698 |
+
@register_decoder
|
699 |
+
def get_masked_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification, extra):
|
700 |
+
return MultiScaleMaskedTransformerDecoder(cfg, in_channels, lang_encoder, mask_classification, extra)
|