Spaces:
Paused
Paused
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from timm.models.layers import trunc_normal_ | |
from .registry import register_model | |
from ..utils import configurable | |
from .LangEncoder import build_tokenizer, build_lang_encoder | |
from utils.misc import prompt_engineering, get_prompt_templates | |
class LanguageEncoder(nn.Module): | |
def __init__( | |
self, | |
tokenizer, | |
tokenizer_type, | |
lang_encoder, | |
lang_projection, | |
max_token_num, | |
): | |
super().__init__() | |
self.tokenizer = tokenizer | |
self.tokenizer_type = tokenizer_type | |
self.lang_encoder = lang_encoder | |
self.lang_proj = lang_projection | |
self.max_token_num = max_token_num | |
self.logit_scale = nn.Parameter(torch.ones([])) | |
def from_config(cls, cfg): | |
tokenizer = build_tokenizer(cfg['MODEL']['TEXT']) | |
tokenizer_type = cfg['MODEL']['TEXT']['TOKENIZER'] | |
lang_encoder = build_lang_encoder(cfg['MODEL']['TEXT'], tokenizer, cfg['VERBOSE']) | |
max_token_num = cfg['MODEL']['TEXT']['CONTEXT_LENGTH'] | |
dim_lang = cfg['MODEL']['TEXT']['WIDTH'] | |
dim_projection = cfg['MODEL']['DIM_PROJ'] | |
lang_projection = nn.Parameter(torch.empty(dim_lang, dim_projection)) | |
trunc_normal_(lang_projection, std=.02) | |
return { | |
"tokenizer": tokenizer, | |
"tokenizer_type": tokenizer_type, | |
"lang_encoder": lang_encoder, | |
"lang_projection": lang_projection, | |
"max_token_num": max_token_num, | |
} | |
def get_text_embeddings(self, class_names, name='default', is_eval=False, add_bgd=False, prompt=True, norm=True): | |
if not is_eval: | |
if prompt: | |
# randomly sample one template | |
arbitary_concepts = [ | |
prompt_engineering(class_names[label].replace('-other','').replace('-merged','').replace('-stuff',''), topk=10000, suffix='.') \ | |
for label in range(len(class_names)) | |
] | |
if add_bgd: | |
arbitary_concepts.append("A background in coco.") | |
else: | |
arbitary_concepts = class_names | |
input_ids = [] | |
attention_masks = [] | |
for txt in arbitary_concepts: | |
tokens = self.tokenizer( | |
txt, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt' | |
) | |
tokens['input_ids'].squeeze_() | |
tokens['attention_mask'].squeeze_() | |
input_ids.append(tokens['input_ids']) | |
attention_masks.append(tokens['attention_mask']) | |
arbitary_tokens = torch.stack(input_ids) | |
arbitary_attention_masks = torch.stack(attention_masks) | |
text_emb = self.forward_language((arbitary_tokens.cuda(), arbitary_attention_masks.cuda()), norm=norm) | |
setattr(self, '{}_text_embeddings'.format(name), text_emb) | |
else: | |
with torch.no_grad(): | |
def extract_mean_emb(txts): | |
tokens = self.tokenizer( | |
txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt' | |
) | |
clss_embedding = self.forward_language((tokens['input_ids'].cuda(), tokens['attention_mask'].cuda()), norm=norm) | |
clss_embedding = clss_embedding.mean(dim=0) | |
clss_embedding /= clss_embedding.norm() | |
return clss_embedding | |
templates = get_prompt_templates() | |
clss_embeddings = [] | |
if prompt: | |
for clss in class_names: | |
txts = [template.format(clss.replace('-other','').replace('-merged','').replace('-stuff','')) for template in templates] | |
clss_embeddings.append(extract_mean_emb(txts)) | |
else: | |
clss_embeddings.append(extract_mean_emb(class_names)) | |
if add_bgd: | |
txts = ["A background in coco."] | |
clss_embeddings.append(extract_mean_emb(txts)) | |
text_emb = torch.stack(clss_embeddings, dim=0) | |
setattr(self, '{}_text_embeddings'.format(name), text_emb) | |
def get_text_token_embeddings(self, txts, name='default', token=False, norm=False): | |
if not token: | |
tokens = self.tokenizer( | |
txts, padding='max_length', truncation=True, max_length=self.max_token_num, return_tensors='pt' | |
) | |
tokens = {key: value.cuda() for key, value in tokens.items()} | |
else: | |
tokens = txts | |
token_emb, class_emb = self.forward_language_token((tokens['input_ids'], tokens['attention_mask']), norm=norm) | |
ret = {"tokens": tokens, | |
"token_emb": token_emb, | |
"class_emb": class_emb,} | |
setattr(self, '{}_token_embeddings'.format(name), ret) | |
return ret | |
def forward_language(self, texts, norm=True): | |
x = self.lang_encoder(*texts) | |
x = x['last_hidden_state'] | |
if self.tokenizer_type == 'clip': | |
x = x[torch.arange(x.size(0)), texts[0].argmax(dim=-1)] | |
else: | |
x = x[:, 0] | |
x = x @ self.lang_proj | |
if norm: | |
x = x / (x.norm(dim=-1, keepdim=True) + 1e-7) | |
return x | |
def forward_language_token(self, texts, norm=False): | |
x = self.lang_encoder(*texts) | |
token_x = x['last_hidden_state'] | |
if self.tokenizer_type == 'clip': | |
class_x = token_x[torch.arange(token_x.size(0)), texts[0].argmax(dim=-1)] | |
else: | |
class_x = token_x[:, 0] | |
class_x = class_x @ self.lang_proj | |
token_x = token_x @ self.lang_proj | |
if norm: | |
class_x = class_x / (class_x.norm(dim=-1, keepdim=True) + 1e-7) | |
token_x = token_x / (token_x.norm(dim=-1, keepdim=True) + 1e-7) | |
return token_x, class_x | |
def compute_similarity(self, v_emb, name='default', fake=False): | |
if fake: | |
return None | |
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) | |
t_emb = getattr(self, '{}_text_embeddings'.format(name)) | |
output = self.logit_scale.exp() * v_emb @ t_emb.unsqueeze(0).transpose(1, 2) | |
return output | |
def get_language_model(cfg, **kwargs): | |
return LanguageEncoder(cfg) |