Spaces:
Paused
Paused
File size: 27,895 Bytes
009b227 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou ([email protected])
# --------------------------------------------------------
import random
from typing import Tuple
from unicodedata import name
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from .registry import register_model
from ..utils import configurable
from ..backbone import build_backbone, Backbone
from ..body import build_xdecoder_head
from ..modules import sem_seg_postprocess, bbox_postprocess
from ..language import build_language_encoder
from ..language.loss import vl_similarity
from timm.models.layers import trunc_normal_
from nltk.stem.lancaster import LancasterStemmer
from detectron2.structures import Boxes, ImageList, Instances, BitMasks, BoxMode
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.data import MetadataCatalog
from utils.misc import prompt_engineering
st = LancasterStemmer()
class X_Decoder_Model(nn.Module):
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
losses: dict,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
task_switch: dict,
phrase_prob: float,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
train_dataset_name: str,
retrieval_emsemble: bool,
backbone_dim: int,
dim_proj: int,
):
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.criterion = criterion
self.losses = losses
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
# caption argument
self.task_switch = task_switch
self.phrase_prob = phrase_prob
self.test_topk_per_image = test_topk_per_image
self.train_class_names = None
self.retrieval_emsemble = retrieval_emsemble
# backbone itc loss
if task_switch['retrieval'] and retrieval_emsemble:
self.backbone_proj = nn.Parameter(torch.empty(backbone_dim, dim_proj))
trunc_normal_(self.backbone_proj, std=.02)
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
@classmethod
def from_config(cls, cfg):
enc_cfg = cfg['MODEL']['ENCODER']
dec_cfg = cfg['MODEL']['DECODER']
task_switch = {'bbox': dec_cfg.get('DETECTION', False),
'mask': dec_cfg.get('MASK', True),
'caption': dec_cfg['CAPTION'].get('ENABLED', False),
'captioning': dec_cfg['CAPTIONING'].get('ENABLED', False),
'retrieval': dec_cfg['RETRIEVAL'].get('ENABLED', False),
'grounding': dec_cfg['GROUNDING'].get('ENABLED', False)}
# build model
extra = {'task_switch': task_switch}
backbone = build_backbone(cfg)
lang_encoder = build_language_encoder(cfg)
sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra)
# Training Settings.
loss_weights = {}
matcher = None
losses = {}
weight_dict = {}
grd_weight = {}
top_x_layers = {}
criterion = None
train_dataset_name = None
phrase_prob = None
# Loss parameters:
deep_supervision = None
no_object_weight = None
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"criterion": criterion,
"losses": losses,
"num_queries": dec_cfg['NUM_OBJECT_QUERIES'],
"object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'],
"overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'],
"metadata": None,
"size_divisibility": dec_cfg['SIZE_DIVISIBILITY'],
"sem_seg_postprocess_before_inference": (
dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE']
or dec_cfg['TEST']['PANOPTIC_ON']
or dec_cfg['TEST']['INSTANCE_ON']
),
"pixel_mean": cfg['INPUT']['PIXEL_MEAN'],
"pixel_std": cfg['INPUT']['PIXEL_STD'],
"task_switch": task_switch,
"phrase_prob": phrase_prob,
# inference
"semantic_on": dec_cfg['TEST']['SEMANTIC_ON'],
"instance_on": dec_cfg['TEST']['INSTANCE_ON'],
"panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'],
"test_topk_per_image": cfg['MODEL']['DECODER']['TEST']['DETECTIONS_PER_IMAGE'],
"train_dataset_name": train_dataset_name,
"retrieval_emsemble": dec_cfg['RETRIEVAL']['ENSEMBLE'],
"backbone_dim": cfg['MODEL']['BACKBONE_DIM'],
"dim_proj": cfg['MODEL']['DIM_PROJ'],
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs, mode=None):
if self.training:
assert False, "Not support trianing mode."
else:
if mode == 'retrieval':
return self.evaluate_retrieval(batched_inputs)
elif mode == 'captioning':
return self.evaluate_captioning(batched_inputs)
elif mode == 'classification':
return self.evaluate_classification(batched_inputs)
elif mode in ['grounding_phrasecut', 'grounding_refcoco']:
return self.evaluate_grounding(batched_inputs, mode)
else:
return self.evaluate(batched_inputs)
def evaluate(self, batched_inputs):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, target_queries=queries_grounding)
mask_cls_results = outputs["pred_logits"]
mask_pred_results = outputs["pred_masks"]
box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))]
caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]
# upsample masks
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
input_size = mask_pred_results.shape[-2:]
keep_sem_bgd = self.metadata.keep_sem_bgd if hasattr(self.metadata, 'keep_sem_bgd') else False
del outputs
processed_results = []
for mask_cls_result, mask_pred_result, box_pred_result, caption_pred_result, input_per_image, image_size in zip(
mask_cls_results, mask_pred_results, box_pred_results, caption_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
if self.sem_seg_postprocess_before_inference:
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result, keep_sem_bgd)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# instance segmentation inference
if self.instance_on:
if self.task_switch['bbox']:
box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width)
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result)
processed_results[-1]["instances"] = instance_r
if self.task_switch['caption']:
processed_results[-1]["captions"] = caption_pred_result
processed_results[-1]["masks"] = mask_pred_result
return processed_results
def evaluate_retrieval(self, batched_inputs):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, target_queries=queries_grounding)
v_emb_it = outputs['pred_captions'][:,-1]
# compute backbone score
if self.task_switch['retrieval'] and self.retrieval_emsemble:
_v_emb_it = features['res5']
bs,nc,_,_ = _v_emb_it.shape
_v_emb_it = _v_emb_it.reshape(bs,nc,-1)
_v_emb_it = F.adaptive_avg_pool1d(_v_emb_it, 1).reshape(bs,nc) @ self.backbone_proj
processed_results = []
for idx, batch_data in enumerate(batched_inputs):
caption_ids = []
t_emb_its = []
processed_results.append({})
for caption in batch_data['captions']:
lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(caption)
t_emb_it = lang_results['class_emb']
caption_ids.append(batch_data['image_id'])
t_emb_its.append(t_emb_it)
t_emb_it = torch.cat(t_emb_its, dim=0)
image_embeds = [v_emb_it[idx].unsqueeze(0)]
if self.task_switch['retrieval'] and self.retrieval_emsemble:
image_embeds += [_v_emb_it[idx].unsqueeze(0)]
caption_results = {
'image_embeds': image_embeds,
'text_embeds': t_emb_it,
'caption_ids': caption_ids,
'image_ids': batch_data['image_id'],
}
processed_results[-1]["caption"] = caption_results
return processed_results
def evaluate_captioning(self, batched_inputs, extra={}):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
if not hasattr(self, 'start_token'):
self.start_token = torch.tensor([[49406]*77], device=self.device)
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
captioning_mask = None
if 'captioning_mask' in batched_inputs[-1]:
captioning_mask = torch.cat([x['captioning_mask'] for x in batched_inputs])
extra.update({'start_token': self.start_token, 'captioning_mask': captioning_mask})
outputs = self.sem_seg_head(features, target_queries=queries_grounding, task='captioning_infer', extra=extra)
processed_results = []
for idx, batch_data in enumerate(batched_inputs):
processed_results.append({})
processed_results[-1]["captioning_token"] = outputs['pred_captionings'][idx]
processed_results[-1]["captioning_text"] = outputs['pred_texts'][idx].split('.')[0]
processed_results[-1]["image_id"] = batched_inputs[idx]['image_id']
return processed_results
def evaluate_classification(self, batched_inputs):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, target_queries=queries_grounding)
processed_results = []
for idx, batch_data in enumerate(batched_inputs):
processed_results.append({})
processed_results[-1]["pred_class"] = outputs['pred_logits'][idx,-1]
return processed_results
def evaluate_grounding_baseline(self, batched_inputs, mode):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
img_bs = images.tensor.shape[0]
targets = targets_grounding = queries_grounding = None
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, target_queries=queries_grounding)
mask_pred_results = outputs["pred_masks"]
caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]
# upsample masks
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
processed_results = []
for mask_pred_result, caption_pred_result, input_per_image, image_size in zip(
mask_pred_results, caption_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)[:-1]
texts_all = input_per_image['groundings']['texts']
grd_masks = []
for texts in texts_all:
if mode == 'grounding_refcoco':
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=False, is_eval=True)
elif mode == 'grounding_phrasecut':
self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=True, is_eval=False)
t_emb = getattr(self.sem_seg_head.predictor.lang_encoder, "{}_text_embeddings".format('grounding')).t()
v_emb = caption_pred_result[:-1]
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
vt_sim = v_emb @ t_emb
max_id = vt_sim.max(0)[1][0]
grd_masks += [mask_pred_result[max_id]]
processed_results[-1]['grounding_mask'] = torch.stack(grd_masks)
return processed_results
def evaluate_grounding(self, batched_inputs, mode):
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
extra = {}
# mask_pred_results = []
# for idx, batch_per_image in enumerate(batched_inputs):
# grd_texts = batch_per_image['groundings']['texts']
# grd_masks = []
# for anno_text in grd_texts:
# gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False)
# token_emb = gtext['token_emb']
# tokens = gtext['tokens']
# grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]]
# extra['grounding_tokens'] = grd_emb[:,None]
# assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
# features = self.backbone(images.tensor)
# outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
# pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
# v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
# t_emb = grd_emb[-1:]
# t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
# v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
# temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
# matched_id = out_prob.max(0)[1]
# grd_masks += [pred_gmasks[matched_id,:,:]]
# mask_pred_results += [torch.cat(grd_masks)]
# comment for multi object inference.
mask_pred_results = []
for idx, batch_per_image in enumerate(batched_inputs):
grd_texts = batch_per_image['groundings']['texts']
grd_texts = [x[0] for x in grd_texts]
gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
token_emb = gtext['token_emb']
tokens = gtext['tokens']
query_emb = token_emb[tokens['attention_mask'].bool()]
extra['grounding_tokens'] = query_emb[:,None]
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
t_emb = gtext['class_emb']
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
matched_id = out_prob.max(0)[1]
mask_pred_results += [pred_gmasks[matched_id,:,:]]
for i in range(len(mask_pred_results)):
# upsample masks
mask_pred_results[i] = F.interpolate(
mask_pred_results[i][None,],
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)[0]
processed_results = []
for mask_pred_result, input_per_image, image_size in zip(
mask_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
processed_results[-1]['grounding_mask'] = mask_pred_result
# compute bbox
# bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes()
# bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
# processed_results[-1]['grounding_box'] = bbox
return processed_results
def prepare_vlp_targets(self, batched_inputs, device):
input_ids = []
attention_mask = []
for cnt, x in enumerate(batched_inputs):
captions = x['captions']
randid = random.randint(0, len(captions)-1)
input_ids += x['tokens']['input_ids'][randid:randid+1]
attention_mask += x['tokens']['attention_mask'][randid:randid+1]
input_ids = torch.stack(input_ids)
attention_mask = torch.stack(attention_mask)
tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(tokens, token=True)
target_vlp = []
for cnt, x in enumerate(batched_inputs):
target_dict = {}
target_dict["caption_tokens"] = lang_results['token_emb'][cnt:cnt+1]
target_dict["caption_proj"] = lang_results['class_emb'][cnt:cnt+1]
target_dict["caption_tokenids"] = lang_results['tokens']['input_ids'][cnt:cnt+1]
target_dict["caption_mask"] = lang_results['tokens']['attention_mask'][cnt:cnt+1]
target_vlp.append(target_dict)
return target_vlp
def semantic_inference(self, mask_cls, mask_pred, keep_sem_bgd=False):
if keep_sem_bgd:
mask_cls = F.softmax(mask_cls, dim=-1)
else:
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
mask_pred = mask_pred.sigmoid()
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_mask_cls = mask_cls[keep]
cur_mask_cls = cur_mask_cls[:, :-1]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
for k in range(cur_classes.shape[0]):
pred_class = cur_classes[k].item()
isthing = pred_class in thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold:
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
continue
else:
stuff_memory_list[int(pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
def instance_inference(self, mask_cls, mask_pred, box_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
# [Q, K]
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = (topk_indices // self.sem_seg_head.num_classes)
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = mask_pred[topk_indices]
if box_pred is not None:
box_pred = box_pred[topk_indices]
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
if box_pred is not None:
box_pred = box_pred[keep]
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > 0).float()
# result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
if box_pred is not None:
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
else:
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result
@register_model
def get_segmentation_model(cfg, **kwargs):
return X_Decoder_Model(cfg) |