import gradio as gr import whisper from PIL import Image import os MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') from diffusers import StableDiffusionPipeline whisper_model = whisper.load_model("small") device="cpu" pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=MY_SECRET_TOKEN) pipe.to(device) def get_transcribe(audio): audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) _, probs = whisper_model.detect_language(mel) options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(whisper_model, mel, options) print(result.text) return result.text def get_images(audio): prompt = get_transcribe(audio) #image = pipe(prompt, init_image=init_image)["sample"][0] images_list = pipe([prompt] * 2) images = [] safe_image = Image.open(r"unsafe.png") for i, image in enumerate(images_list["sample"]): if(images_list["nsfw_content_detected"][i]): images.append(safe_image) else: images.append(image) return images #inputs audio = gr.Audio(label="Input Audio", show_label=False, source="microphone", type="filepath") #outputs gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") gr.Interface(fn=get_images, inputs=audio, outputs=gallery).queue(max_size=10).launch(enable_queue=True)