File size: 18,864 Bytes
9fd51b2 3bddfce d50061a 9fd51b2 d50061a 9fd51b2 3bddfce 9fd51b2 3bddfce 9fd51b2 a1d35c1 3a7d7b2 4b4ce6b d50061a 9fd51b2 3bddfce 9fd51b2 3bddfce 9fd51b2 4b4ce6b 3bddfce 4b4ce6b 9fd51b2 d50061a 3bddfce 9fd51b2 e4ac605 9fd51b2 3bddfce 4b4ce6b d50061a 7a2d549 d50061a 23ffa3b d50061a 4b4ce6b d50061a 4b4ce6b 3b6f2b0 23e2bc5 4b4ce6b 7a2d549 4b4ce6b 9bf1244 7236a22 9bf1244 862f243 9bf1244 7236a22 9bf1244 862f243 7236a22 862f243 9bf1244 4b4ce6b 7236a22 9bf1244 23ffa3b 9bf1244 862f243 4b4ce6b 7a5a2b2 3bddfce 4b4ce6b 3bddfce 4b4ce6b 3bddfce 4b4ce6b 3bddfce 4b4ce6b 3bddfce d50061a 4b4ce6b 3bddfce 4b4ce6b 3bddfce 4b4ce6b 9bf1244 3bddfce 475dd41 3bddfce 4b4ce6b 3bddfce 4b4ce6b 3bddfce 4b4ce6b 3bddfce 4b4ce6b 3bddfce d50061a 4b4ce6b d50061a 4b4ce6b d50061a 4b4ce6b d50061a 4b4ce6b d50061a 4b4ce6b d50061a 4b4ce6b 3bddfce 4b4ce6b 3bddfce 4b4ce6b 3bddfce 4b4ce6b 438b9a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import gradio as gr
#import torch
#import whisper
#from datetime import datetime
from PIL import Image
#import flag
import os
#MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
#from diffusers import StableDiffusionPipeline
whisper = gr.Blocks.load(name="spaces/sanchit-gandhi/whisper-large-v2")
stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5")
### ββββββββββββββββββββββββββββββββββββββββ
title="Whisper to Stable Diffusion"
### ββββββββββββββββββββββββββββββββββββββββ
#whisper_model = whisper.load_model("small")
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=MY_SECRET_TOKEN)
#pipe.to(device)
### ββββββββββββββββββββββββββββββββββββββββ
def get_images(prompt):
gallery_dir = stable_diffusion(prompt, fn_index=2)
return [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir)]
def magic_whisper_to_sd(audio, guidance_scale, nb_iterations, seed):
whisper_results = translate_better(audio)
prompt = whisper_results[1]
images = get_images(prompt)
return whisper_results[0], whisper_results[1], images
#def diffuse(prompt, guidance_scale, nb_iterations, seed):
#
# generator = torch.Generator(device=device).manual_seed(int(seed))
#
# print("""
# β
# Sending prompt to Stable Diffusion ...
# β
# """)
# print("prompt: " + prompt)
# print("guidance scale: " + str(guidance_scale))
# print("inference steps: " + str(nb_iterations))
# print("seed: " + str(seed))
#
# images_list = pipe(
# [prompt] * 2,
# guidance_scale=guidance_scale,
# num_inference_steps=nb_iterations,
# generator=generator
# )
#
# images = []
#
# safe_image = Image.open(r"unsafe.png")
#
# for i, image in enumerate(images_list["sample"]):
# if(images_list["nsfw_content_detected"][i]):
# images.append(safe_image)
# else:
# images.append(image)
#
#
# print("Stable Diffusion has finished")
# print("βββββββββββββββββββββββββββββββββββββββββββ")
#
# return images
def translate_better(audio):
print("""
β
Sending audio to Whisper ...
β
""")
transcribe_text_result = whisper(audio, None, "transcribe", fn_index=0)
translate_text_result = whisper(audio, None, "translate", fn_index=0)
print("transcript: " + transcribe_text_result)
print("βββββββββββββββββββββββββββββββββββββββββββ")
print("translated: " + translate_text_result)
return transcribe_text_result, translate_text_result
#def translate(audio):
# print("""
# β
# Sending audio to Whisper ...
# β
# """)
# # current dateTime
# now = datetime.now()
# # convert to string
# date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
# print('DateTime String:', date_time_str)
#
# audio = whisper.load_audio(audio)
# audio = whisper.pad_or_trim(audio)
#
# mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
#
# _, probs = whisper_model.detect_language(mel)
#
# transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
# translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
#
# transcription = whisper.decode(whisper_model, mel, transcript_options)
# translation = whisper.decode(whisper_model, mel, translate_options)
#
# print("language spoken: " + transcription.language)
# print("transcript: " + transcription.text)
# print("βββββββββββββββββββββββββββββββββββββββββββ")
# print("translated: " + translation.text)
# if transcription.language == "en":
# tr_flag = flag.flag('GB')
# else:
# tr_flag = flag.flag(transcription.language)
# return tr_flag, transcription.text, translation.text
### ββββββββββββββββββββββββββββββββββββββββ
css = """
.container {
max-width: 780px;
margin: auto;
padding-top: 1.5rem;
}
a {
text-decoration: underline;
}
h1 {
font-weight: 900;
margin-bottom: 7px;
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
#w2sd_container{
margin-top: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.tabitem {
border-bottom-left-radius: 10px;
border-bottom-right-radius: 10px;
}
#record_tab, #upload_tab {
font-size: 1.2em;
}
#record_btn{
}
#record_btn > div > button > span {
width: 2.375rem;
height: 2.375rem;
}
#record_btn > div > button > span > span {
width: 2.375rem;
height: 2.375rem;
}
audio {
margin-bottom: 10px;
}
div#record_btn > .mt-6{
margin-top: 0!important;
}
div#record_btn > .mt-6 button {
font-size: 2em;
width: 100%;
padding: 20px;
height: 160px;
}
div#upload_area {
height: 11.1rem;
}
div#upload_area > div.w-full > div {
min-height: 9rem;
}
#check_btn_1, #check_btn_2{
color: #fff;
--tw-gradient-from: #4caf50;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #4caf50;
border-color: #8bc34a;
}
#magic_btn_1, #magic_btn_2{
color: #fff;
--tw-gradient-from: #f44336;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #ff9800;
border-color: #ff9800;
}
input::-webkit-inner-spin-button, input::-webkit-outer-spin-button {
-webkit-appearance: none;
}
input[type=number] {
-moz-appearance: textfield;
}
input[type=range] {
-webkit-appearance: none;
cursor: pointer;
height: 1px;
background: currentColor;
}
input[type=range]::-webkit-slider-thumb {
-webkit-appearance: none;
width: 0.5em;
height: 1.2em;
border-radius: 10px;
background: currentColor;
}
input[type=range]::-moz-range-thumb{
width: 0.5em;
height: 1.2em;
border-radius: 10px;
background: currentColor;
}
div#spoken_lang textarea {
font-size: 4em;
line-height: 1em;
text-align: center;
}
div#transcripted {
flex: 4;
}
div#translated textarea {
font-size: 1.5em;
line-height: 1.25em;
}
#sd_settings {
margin-bottom: 20px;
}
#diffuse_btn {
color: #fff;
font-size: 1em;
margin-bottom: 20px;
--tw-gradient-from: #4caf50;
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
--tw-gradient-to: #4caf50;
border-color: #8bc34a;
}
#notice {
padding: 20px 14px 10px;
display: flex;
align-content: space-evenly;
gap: 20px;
line-height: 1em;
font-size: .8em;
border: 1px solid #374151;
border-radius: 10px;
}
#about {
padding: 20px;
}
#notice > div {
flex: 1;
}
"""
### ββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(css="style.css") as demo:
with gr.Column():
gr.HTML('''
<h1>
Whisper to Stable Diffusion
</h1>
<p style='text-align: center;'>
Ask stable diffusion for images by speaking (or singing π€) in your native language ! Try it in French π
</p>
<p style='text-align: center;'>
This demo is wired to the official SD Space β’ Offered by Sylvain <a href='https://twitter.com/fffiloni' target='_blank'>@fffiloni</a> β’ <img id='visitor-badge' alt='visitor badge' src='https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.whisper-to-stable-diffusion' style='display: inline-block' /><br />
β
</p>
''')
# with gr.Row(elem_id="w2sd_container"):
# with gr.Column():
gr.Markdown(
"""
## 1. Record audio or Upload an audio file:
"""
)
with gr.Tab(label="Record audio input", elem_id="record_tab"):
with gr.Column():
record_input = gr.Audio(
source="microphone",
type="filepath",
show_label=False,
elem_id="record_btn"
)
with gr.Row():
audio_r_translate = gr.Button("Check Whisper first ? π", elem_id="check_btn_1")
audio_r_direct_sd = gr.Button("Magic Whisper βΊ SD right now!", elem_id="magic_btn_1")
with gr.Tab(label="Upload audio input", elem_id="upload_tab"):
with gr.Column():
upload_input = gr.Audio(
source="upload",
type="filepath",
show_label=False,
elem_id="upload_area"
)
with gr.Row():
audio_u_translate = gr.Button("Check Whisper first ? π", elem_id="check_btn_2")
audio_u_direct_sd = gr.Button("Magic Whisper βΊ SD right now!", elem_id="magic_btn_2")
with gr.Accordion(label="Stable Diffusion Settings", elem_id="sd_settings", visible=False):
with gr.Row():
guidance_scale = gr.Slider(2, 15, value = 7, label = 'Guidance Scale')
nb_iterations = gr.Slider(10, 50, value = 25, step = 1, label = 'Steps')
seed = gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True)
gr.Markdown(
"""
## 2. Check Whisper output, correct it if necessary:
"""
)
with gr.Row():
transcripted_output = gr.Textbox(
label="Transcription in your detected spoken language",
lines=3,
elem_id="transcripted"
)
#language_detected_output = gr.Textbox(label="Native language", elem_id="spoken_lang",lines=3)
with gr.Column():
translated_output = gr.Textbox(
label="Transcript translated in English by Whisper",
lines=4,
elem_id="translated"
)
with gr.Row():
clear_btn = gr.Button(value="Clear")
diffuse_btn = gr.Button(value="OK, Diffuse this prompt !", elem_id="diffuse_btn")
clear_btn.click(fn=lambda value: gr.update(value=""), inputs=clear_btn, outputs=translated_output)
# with gr.Column():
gr.Markdown("""
## 3. Wait for Stable Diffusion Results βοΈ
Inference time is about ~10 seconds, when it's your turn π¬
"""
)
sd_output = gr.Gallery().style(grid=2, height="auto")
gr.Markdown("""
### π About the models
<p style='font-size: 1em;line-height: 1.5em;'>
<strong>Whisper</strong> is a general-purpose speech recognition model.<br /><br />
It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. <br />
β
</p>
<p style='font-size: 1em;line-height: 1.5em;'>
<strong>Stable Diffusion</strong> is a state of the art text-to-image model that generates images from text.
</p>
<div id="notice">
<div>
LICENSE
<p style='font-size: 0.8em;'>
The model is licensed with a <a href="https://huggingface.co./spaces/CompVis/stable-diffusion-license" target="_blank">CreativeML Open RAIL-M</a> license.</p>
<p style='font-size: 0.8em;'>
The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license.</p>
<p style='font-size: 0.8em;'>
The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups.</p>
<p style='font-size: 0.8em;'>
For the full list of restrictions please <a href="https://huggingface.co./spaces/CompVis/stable-diffusion-license" target="_blank" target="_blank">read the license</a>.
</p>
</div>
<div>
Biases and content acknowledgment
<p style='font-size: 0.8em;'>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence.</p>
<p style='font-size: 0.8em;'>
The model was trained on the <a href="https://laion.ai/blog/laion-5b/" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes.</p>
<p style='font-size: 0.8em;'> You can read more in the <a href="https://huggingface.co./CompVis/stable-diffusion-v1-4" target="_blank">model card</a>.
</p>
</div>
</div>
""", elem_id="about")
audio_r_translate.click(translate_better,
inputs = record_input,
outputs = [
#language_detected_output,
transcripted_output,
translated_output
])
audio_u_translate.click(translate_better,
inputs = upload_input,
outputs = [
#language_detected_output,
transcripted_output,
translated_output
])
audio_r_direct_sd.click(magic_whisper_to_sd,
inputs = [
record_input,
guidance_scale,
nb_iterations,
seed
],
outputs = [
#language_detected_output,
transcripted_output,
translated_output,
sd_output
])
audio_u_direct_sd.click(magic_whisper_to_sd,
inputs = [
upload_input,
guidance_scale,
nb_iterations,
seed
],
outputs = [
#language_detected_output,
transcripted_output,
translated_output,
sd_output
])
diffuse_btn.click(get_images,
inputs = [
translated_output
],
outputs = sd_output
)
gr.HTML('''
<div class="footer">
<p>Whisper by <a href="https://github.com/openai/whisper" target="_blank">OpenAI</a> - Stable Diffusion by <a href="https://huggingface.co./CompVis" target="_blank">CompVis</a> and <a href="https://huggingface.co./stabilityai" target="_blank">Stability AI</a>
</p>
</div>
''')
if __name__ == "__main__":
demo.queue(max_size=32, concurrency_count=20).launch() |