import numpy as np def a_weight(fs, n_fft, min_db=-80.0): freq = np.linspace(0, fs // 2, n_fft // 2 + 1) freq_sq = np.power(freq, 2) freq_sq[0] = 1.0 weight = 2.0 + 20.0 * (2 * np.log10(12194) + 2 * np.log10(freq_sq) - np.log10(freq_sq + 12194 ** 2) - np.log10(freq_sq + 20.6 ** 2) - 0.5 * np.log10(freq_sq + 107.7 ** 2) - 0.5 * np.log10(freq_sq + 737.9 ** 2)) weight = np.maximum(weight, min_db) return weight def compute_gain(sound, fs, min_db=-80.0, mode="A_weighting"): if fs == 16000: n_fft = 2048 elif fs == 24000: n_fft = 4096 elif fs == 32000: n_fft = 2048 elif fs == 44100: n_fft = 2048 elif fs == 48000: n_fft = 4096 else: raise Exception("Invalid fs {}".format(fs)) stride = n_fft // 2 gain = [] for i in range(0, len(sound) - n_fft + 1, stride): if mode == "RMSE": g = np.mean(sound[i: i + n_fft] ** 2) elif mode == "A_weighting": spec = np.fft.rfft(np.hanning(n_fft + 1)[:-1] * sound[i: i + n_fft]) power_spec = np.abs(spec) ** 2 a_weighted_spec = power_spec * np.power(10, a_weight(fs, n_fft) / 10) g = np.sum(a_weighted_spec) else: raise Exception("Invalid mode {}".format(mode)) gain.append(g) gain = np.array(gain) gain = np.maximum(gain, np.power(10, min_db / 10)) gain_db = 10 * np.log10(gain) return gain_db def mix(sound1, sound2, r, fs): gain1 = np.max(compute_gain(sound1, fs)) # Decibel gain2 = np.max(compute_gain(sound2, fs)) t = 1.0 / (1 + np.power(10, (gain1 - gain2) / 20.) * (1 - r) / r) sound = ((sound1 * t + sound2 * (1 - t)) / np.sqrt(t ** 2 + (1 - t) ** 2)) return sound