import torch import torchaudio import random import itertools import numpy as np from tools.mix import mix from PIL import Image import cv2 from moviepy.editor import VideoFileClip from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode, RandomResizedCrop def normalize_wav(waveform): waveform = waveform - torch.mean(waveform) waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8) return waveform * 0.5 def sinusoidal_positional_embedding(token_sequence_size, token_embedding_dim, n=10000.0): if token_embedding_dim % 2 != 0: raise ValueError("Sinusoidal positional embedding cannot apply to odd token embedding dim (got dim={:d})".format(token_embedding_dim)) T = token_sequence_size d = token_embedding_dim #d_model=head_num*d_k, not d_q, d_k, d_v positions = torch.arange(0, T).unsqueeze_(1) embeddings = torch.zeros(T, d) denominators = torch.pow(n, 2*torch.arange(0, d//2)/d) # 10000^(2i/d_model), i is the index of embedding embeddings[:, 0::2] = torch.sin(positions/denominators) # sin(pos/10000^(2i/d_model)) embeddings[:, 1::2] = torch.cos(positions/denominators) # cos(pos/10000^(2i/d_model)) return embeddings def pad_wav(waveform, segment_length): waveform_length = len(waveform) if segment_length is None or waveform_length == segment_length: return waveform elif waveform_length > segment_length: return waveform[:segment_length] else: pad_wav = torch.zeros(segment_length - waveform_length).to(waveform.device) waveform = torch.cat([waveform, pad_wav]) return waveform def _pad_spec(fbank, target_length=1000): batch, n_frames, channels = fbank.shape p = target_length - n_frames if p > 0: pad = torch.zeros(batch, p, channels).to(fbank.device) fbank = torch.cat([fbank, pad], 1) elif p < 0: fbank = fbank[:, :target_length, :] if channels % 2 != 0: fbank = fbank[:, :, :-1] return fbank def read_wav_file(filename, segment_length, tgt_sr=48000): waveform, sr = torchaudio.load(filename) # Faster!!! if sr != tgt_sr: waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=tgt_sr)[0] else: waveform = waveform.squeeze() try: waveform = normalize_wav(waveform) except: print ("Exception normalizing:", filename) waveform = torch.ones(tgt_sr * 10) waveform = pad_wav(waveform, segment_length).unsqueeze(0) waveform = waveform / torch.max(torch.abs(waveform)) waveform = 0.5 * waveform return waveform def get_mel_from_wav(audio, _stft): audio1 = torch.nan_to_num(torch.clip(audio, -1, 1)) audio2 = torch.autograd.Variable(audio1, requires_grad=False) melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio2) return melspec, log_magnitudes_stft, energy def wav_to_fbank(paths, target_length=1000, sample_rate=16000, fn_STFT=None): assert fn_STFT is not None if sample_rate == 16000: hop_size = 160 elif sample_rate == 24000: hop_size = 240 elif sample_rate == 32000: hop_size = 320 elif sample_rate == 48000: hop_size = 480 else: raise ValueError(f"sample_rate wrong.") #print("target_length", target_length, hop_size) #print("target_length", target_length, sample_rate, fn_STFT) #for name, param in fn_STFT.named_parameters(): # print(name, param.data) waveform = torch.cat([read_wav_file(path, target_length * hop_size, tgt_sr=sample_rate) for path in paths], 0) # hop size is 160 #print("waveform", waveform.size()) #np.set_printoptions(threshold=np.inf) #print("waveform", waveform) #f_out = open(paths[0].split("/")[-1]+".scp",'w') fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) #print("fbank", fbank) fbank = fbank.transpose(1, 2) log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2) fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( log_magnitudes_stft, target_length ) #f_out.write(paths[0]+ "\n" + str(waveform.cpu().numpy())+"\n") #f_out.write("audio1"+ "\n" + str(audio1.cpu().numpy())+"\n") #f_out.write("audio2"+ "\n" + str(audio2.cpu().numpy())+"\n") #f_out.write("fbank" + "\n" + str(fbank.cpu().numpy())+"\n") #print(fbank2) return fbank, log_magnitudes_stft, waveform def get_wav_from_video(video_path, segment_length, tgt_sr=48000): video = VideoFileClip(video_path) audio = video.audio sr = audio.fps audio_data = audio.to_soundarray() # 441882 * 2 双通道 waveform = torch.mean(torch.tensor(audio_data, dtype=torch.float), dim=1).unsqueeze(0) # 变成单通道 if sr != tgt_sr: waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=tgt_sr)[0] else: waveform = waveform.squeeze() try: waveform = normalize_wav(waveform) except: print ("Exception normalizing:", video_path) waveform = torch.ones(tgt_sr * 10) waveform = pad_wav(waveform, segment_length).unsqueeze(0) waveform = waveform / torch.max(torch.abs(waveform)) waveform = 0.5 * waveform return waveform def get_wavs_from_videos(video_paths, segment_length, tgt_sr=48000): wavs = [] for video_path in video_paths: waveform = get_wav_from_video(video_path, segment_length, tgt_sr) wavs.append(waveform) wavs = torch.cat(wavs, 0) return wavs def wav_in_video_to_fbank(input, target_length=1000, sample_rate=16000, fn_STFT=None, waveform=False): assert fn_STFT is not None if sample_rate == 16000: hop_size = 160 elif sample_rate == 24000: hop_size = 240 elif sample_rate == 32000: hop_size = 320 elif sample_rate == 48000: hop_size = 480 else: raise ValueError(f"sample_rate wrong.") if not waveform: paths = input waveform = get_wavs_from_videos(paths, target_length * hop_size, tgt_sr=sample_rate) # hop size is 160 else: waveform = input fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) fbank = fbank.transpose(1, 2) log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2) fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( log_magnitudes_stft, target_length ) return fbank, log_magnitudes_stft, waveform def uncapitalize(s): if s: return s[:1].lower() + s[1:] else: return "" def mix_wavs_and_captions(path1, path2, caption1, caption2, target_length=1000, sample_rate=16000): if sample_rate == 16000: hop_size = 160 elif sample_rate == 24000: hop_size = 240 elif sample_rate == 32000: hop_size = 320 elif sample_rate == 48000: hop_size = 480 else: raise ValueError(f"sample_rate wrong.") sound1 = read_wav_file(path1, target_length * hop_size)[0].numpy() #print("sound1", target_length, sound1.size) sound2 = read_wav_file(path2, target_length * hop_size)[0].numpy() mixed_sound = mix(sound1, sound2, 0.5, sample_rate).reshape(1, -1) #print("mixed_sound", mixed_sound.size) mixed_caption = "{} and {}".format(caption1, uncapitalize(caption2)) return mixed_sound, mixed_caption def augment(paths, texts, num_items=4, target_length=1000, sample_rate=16000): mixed_sounds, mixed_captions = [], [] combinations = list(itertools.combinations(list(range(len(texts))), 2)) random.shuffle(combinations) if len(combinations) < num_items: selected_combinations = combinations else: selected_combinations = combinations[:num_items] for (i, j) in selected_combinations: new_sound, new_caption = mix_wavs_and_captions(paths[i], paths[j], texts[i], texts[j], target_length, sample_rate) mixed_sounds.append(new_sound) mixed_captions.append(new_caption) waveform = torch.tensor(np.concatenate(mixed_sounds, 0)) waveform = waveform / torch.max(torch.abs(waveform)) waveform = 0.5 * waveform return waveform, mixed_captions def augment_wav_to_fbank(paths, texts, num_items=4, target_length=1000, sample_rate=16000, fn_STFT=None): assert fn_STFT is not None waveform, captions = augment(paths, texts, target_length = target_length, sample_rate=sample_rate) fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) fbank = fbank.transpose(1, 2) log_magnitudes_stft = log_magnitudes_stft.transpose(1, 2) fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( log_magnitudes_stft, target_length ) return fbank, log_magnitudes_stft, waveform, captions def load_image(impaths, crop_size=384): imgs = [] RGB_mean = [0.485, 0.456, 0.406] RGB_std = [0.229, 0.224, 0.225] image_resize_and_crop = Compose([RandomResizedCrop(crop_size), ToTensor()]) image_normalize = Normalize(mean=RGB_mean, std=RGB_std) for impath in impaths: img = Image.open(impath).convert('RGB') img = image_resize_and_crop(img) img = image_normalize(img) imgs.append(img) imgs = torch.stack(imgs) return imgs def load_video(video_path, frame_rate=1.0, size=224): def preprocess(size, n_px): return Compose([ Resize(size, interpolation=InterpolationMode.BICUBIC), CenterCrop(size), lambda image: image.convert("RGB"), ToTensor(), # Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ])(n_px) videos = [] # for video_path in video_paths: # cap = cv2.VideoCapture(video_path) cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG) frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(cap.get(cv2.CAP_PROP_FPS)) if fps < 1: images = np.zeros([3, size, size], dtype=np.float32) print("ERROR: problem reading video file: ", video_path) else: total_duration = (frameCount + fps - 1) // fps start_sec, end_sec = 0, total_duration interval = fps / frame_rate frames_idx = np.floor(np.arange(start_sec*fps, end_sec*fps, interval)) ret = True images = np.zeros([len(frames_idx), 3, size, size], dtype=np.float32) for i, idx in enumerate(frames_idx): cap.set(cv2.CAP_PROP_POS_FRAMES , idx) ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) last_frame = i images[i,:,:,:] = preprocess(size, Image.fromarray(frame).convert("RGB")) images = images[:last_frame+1] cap.release() return torch.tensor(images)