vta-ldm / models.py
fffiloni's picture
Upload 130 files
c673f60 verified
raw
history blame
32.3 kB
import random
import numpy as np
from tqdm import tqdm
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from einops import repeat
import time
from tools.torch_tools import wav_to_fbank, sinusoidal_positional_embedding
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from audioldm.utils import default_audioldm_config, get_metadata
from transformers import CLIPTokenizer, AutoTokenizer, T5Tokenizer
from transformers import CLIPTextModel, T5EncoderModel, AutoModel
from transformers import CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from transformers import CLIPProcessor, CLIPModel
import diffusers
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers import AutoencoderKL as DiffuserAutoencoderKL
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode, RandomResizedCrop
from diffusers import AudioLDMPipeline
def build_pretrained_models(name):
checkpoint = torch.load(name, map_location="cpu")
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
config = default_audioldm_config(name)
vae_config = config["model"]["params"]["first_stage_config"]["params"]
vae_config["scale_factor"] = scale_factor
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(vae_state_dict)
fn_STFT = TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
vae.eval()
fn_STFT.eval()
return vae, fn_STFT
class EffNetb3(nn.Module):
def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True):
super(EffNetb3, self).__init__()
self.model_name = 'effnetb3'
self.pretrained = pretrained
# Create model
# self.effnet = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b3', pretrained=self.pretrained)
# torch.save(self.effnet, 'model.pth')
self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local')
#self.effnet.conv_stem = nn.Conv2d(1, 40, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
self.embedder = nn.Conv2d(384, embedding_dim, kernel_size=1, stride=1, padding=0)
def forward(self, x):
#out = self.effnet(x)
out = self.effnet.conv_stem(x)
out = self.effnet.bn1(out)
out = self.effnet.act1(out)
for i in range(len(self.effnet.blocks)):
out = self.effnet.blocks[i](out)
out = self.embedder(out)
return out
class EffNetb3_last_layer(nn.Module):
def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True):
super(EffNetb3_last_layer, self).__init__()
self.model_name = 'effnetb3'
self.pretrained = pretrained
self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local')
self.effnet.classifier = nn.Linear(1536, embedding_dim)
def forward(self, x):
out = self.effnet(x)
return out.unsqueeze(-1)
class Clip4Video(nn.Module):
def __init__(self, model, embedding_dim=1024, pretrained=True, pe=False):
super(Clip4Video, self).__init__()
self.pretrained = pretrained
self.clip_vision = CLIPVisionModelWithProjection.from_pretrained(model)
self.clip_text = CLIPTextModelWithProjection.from_pretrained(model)
self.tokenizer = AutoTokenizer.from_pretrained(model)
input_dim = 512 if "clip-vit-base" in model else 768
self.linear_layer = nn.Linear(input_dim, embedding_dim)
self.pe = sinusoidal_positional_embedding(30, input_dim) if pe else None
print("*****PE*****") if pe else print("*****W/O PE*****")
def forward(self, text=None, image=None, video=None):
assert text is not None or image is not None or video is not None, "At least one of text, image or video should be provided"
if text is not None and video is None:
inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device)
out = self.clip_text(**inputs)
out = out.text_embeds.repeat(20, 1)
elif video is not None and text is None:
out = self.clip_vision(video.to(self.clip_vision.device)) # input video x: t * 3 * w * h
out = out.image_embeds # t * 512
if self.pe is not None:
out = out + self.pe[:out.shape[0], :].to(self.clip_vision.device)
# out['last_hidden_state'].shape # t * 50 * 768
# out['image_embeds'].shape # t * 512
elif text is not None and video is not None:
text_inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device)
video_out = self.clip_vision(video.to(self.clip_vision.device))
video_out = video_out.image_embeds
text_out = self.clip_text(**text_inputs)
text_out = text_out.text_embeds.repeat(video_out.shape[0], 1)
# out = text_out + video_out
# concat
out = torch.cat([text_out, video_out], dim=0)
out = self.linear_layer(out) # t * 1024
return out
class AudioDiffusion(nn.Module):
def __init__(
self,
fea_encoder_name,
scheduler_name,
unet_model_name=None,
unet_model_config_path=None,
snr_gamma=None,
freeze_text_encoder=True,
uncondition=False,
img_pretrained_model_path=None,
task=None,
embedding_dim=1024,
pe=False
):
super().__init__()
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.fea_encoder_name = fea_encoder_name
self.scheduler_name = scheduler_name
self.unet_model_name = unet_model_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.freeze_text_encoder = freeze_text_encoder
self.uncondition = uncondition
self.task = task
self.pe = pe
# https://huggingface.co./docs/diffusers/v0.14.0/en/api/schedulers/overview
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
if unet_model_config_path:
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
print("unet_config", unet_config)
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
self.set_from = "random"
print("UNet initialized randomly.")
else:
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
self.set_from = "pre-trained"
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
print("UNet initialized from stable diffusion checkpoint.")
if self.task == "text2audio":
if "stable-diffusion" in self.fea_encoder_name:
self.tokenizer = CLIPTokenizer.from_pretrained(self.fea_encoder_name, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(self.fea_encoder_name, subfolder="text_encoder")
elif "t5" in self.fea_encoder_name and "Chinese" not in self.fea_encoder_name:
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name)
self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name)
elif "Chinese" in self.fea_encoder_name:
self.tokenizer = T5Tokenizer.from_pretrained(self.fea_encoder_name)
self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name)
elif "clap" in self.fea_encoder_name:
self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
self.CLAP_model = laion_clap.CLAP_Module(enable_fusion=False)
self.CLAP_model.load_ckpt(self.fea_encoder_name)
elif "clip-vit" in self.fea_encoder_name:
# self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name)
# self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name)
self.CLIP_model = CLIPTextModelWithProjection.from_pretrained(self.fea_encoder_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name)
if "base" in self.fea_encoder_name:
self.linear_layer = nn.Linear(512, embedding_dim)
else:
self.linear_layer = nn.Linear(768, embedding_dim)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name)
self.text_encoder = AutoModel.from_pretrained(self.fea_encoder_name)
elif self.task == "image2audio":
if "clip-vit" in self.fea_encoder_name:
self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name)
self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name)
self.linear_layer = nn.Linear(512, embedding_dim)
# self.img_fea_extractor = EffNetb3(img_pretrained_model_path)
else:
self.img_fea_extractor = EffNetb3_last_layer(img_pretrained_model_path)
elif self.task == "video2audio":
self.vid_fea_extractor = Clip4Video(model=self.fea_encoder_name, embedding_dim=embedding_dim, pe=pe)
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
if self.freeze_text_encoder:
with torch.no_grad():
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
else:
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_text_CLAP(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(prompt, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt")
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
if self.freeze_text_encoder:
with torch.no_grad():
encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt)
else:
encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt)
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_image(self, prompt, device):
if "clip-vit" in self.fea_encoder_name:
with torch.no_grad():
inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device)
encoder_hidden_states = self.CLIP_model(**inputs).image_embeds
encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024
encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device)
else:
img_fea = self.img_fea_extractor(prompt)
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1)
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
boolean_encoder_mask = boolean_encoder_mask.to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_video(self, video_batch, text=None, device=None):
vid_feas = []
for i, video in enumerate(video_batch):
if text:
vid_fea = self.vid_fea_extractor(video=video, text=text[i]) # t * fea_dim
else:
vid_fea = self.vid_fea_extractor(video=video)
vid_feas.append(vid_fea)
padding = 0
size = max(v.size(0) for v in vid_feas)
batch_size = len(vid_feas)
embed_size = vid_feas[0].size(1)
encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding)
boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
dst.copy_(src)
for i, v in enumerate(vid_feas):
copy_tensor(v, encoder_hidden_states[i][: len(v)])
boolean_encoder_mask[i, len(v):] = False
return encoder_hidden_states.to(device), boolean_encoder_mask.to(device)
def encode_text_CLIP(self, prompt, device):
# tmp_image = np.ones((512, 512, 3))
# with torch.no_grad():
# inputs = self.CLIP_processor(text=prompt, images=tmp_image, return_tensors="pt", padding=True, max_length=77, truncation=True).to(device)
# encoder_hidden_states = self.CLIP_model(**inputs).text_embeds # b * 768
text_inputs = self.tokenizer(prompt, padding=True, truncation=True, return_tensors="pt", max_length=77).to(device)
encoder_hidden_states = self.CLIP_model(**text_inputs).text_embeds
encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024
encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device)
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
boolean_encoder_mask = boolean_encoder_mask.to(device)
return encoder_hidden_states, boolean_encoder_mask
def forward(self, latents, text=None, video=None, image=None, validation_mode=False, device=None):
num_train_timesteps = self.noise_scheduler.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
# encoder_hidden_states.shape [b, t, f]
if self.task == "text2audio":
if "clip-vit" in self.fea_encoder_name:
encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(text, device)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text(text)
if self.uncondition:
mask_indices = [k for k in range(len(text)) if random.random() < 0.1]
# mask_indices = [k for k in range(len(prompt))]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
elif self.task == "image2audio":
encoder_hidden_states, boolean_encoder_mask = self.encode_image(image, device=device)
elif self.task == "video2audio":
encoder_hidden_states, boolean_encoder_mask = self.encode_video(video, text, device=device)
bsz = latents.shape[0]
if validation_mode:
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
else:
# Sample a random timestep for each instance
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
timesteps = timesteps.long()
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
if self.set_from == "random":
model_pred = self.unet(
noisy_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
elif self.set_from == "pre-trained":
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
model_pred = self.unet(
compressed_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
if self.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return loss
@torch.no_grad()
def inference(self, inference_scheduler, text=None, video=None, image=None, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
disable_progress=True, device=None):
start = time.time()
classifier_free_guidance = guidance_scale > 1.0
#print("ldm time 0", time.time()-start, prompt)
if self.task == "text2audio":
batch_size = len(text) * num_samples_per_prompt
if classifier_free_guidance:
if "clip-vit" in self.fea_encoder_name:
encoder_hidden_states, boolean_encoder_mask = self.encode_text_clip_classifier_free(text, num_samples_per_prompt, device=device)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(text, num_samples_per_prompt)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text(text)
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0)
elif self.task == "image2audio":
if classifier_free_guidance:
encoder_hidden_states, boolean_encoder_mask = self.encode_image_classifier_free(image, num_samples_per_prompt, device=device)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_image_no_grad(image, device=device)
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0)
elif self.task == "video2audio":
batch_size = len(video) * num_samples_per_prompt
encoder_hidden_states, boolean_encoder_mask = self.encode_video_classifier_free(video, text, num_samples_per_prompt, device=device)
# import pdb;pdb.set_trace()
#print("ldm time 1", time.time()-start)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, encoder_hidden_states.dtype, device)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
#print("ldm time 2", time.time()-start, timesteps)
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
#print("ldm emu", i, time.time()-start)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
#print("ldm time 3", time.time()-start)
if self.set_from == "pre-trained":
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
return latents
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""] * len(prompt)
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
# import pdb;pdb.set_trace()
return prompt_embeds, boolean_prompt_mask
def encode_image_no_grad(self, prompt, device):
with torch.no_grad():
img_fea = self.img_fea_extractor(prompt)
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1)
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
boolean_encoder_mask = boolean_encoder_mask.to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_text_clip_classifier_free(self, prompt, num_samples_per_prompt, device):
# 如果想测试输入文本的效果,就用下面两行
with torch.no_grad():
encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(prompt, device)
# if "clip-vit" in self.fea_encoder_name:
# with torch.no_grad():
# inputs = self.CLIP_processor(text=['aaa'], images=prompt, return_tensors="pt", padding=True).to(device)
# encoder_hidden_states = self.CLIP_model(**inputs).image_embeds # b * 768
# encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024
# encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device)
# boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
# boolean_encoder_mask = boolean_encoder_mask.to(device)
b, t, n = encoder_hidden_states.shape
attention_mask = boolean_encoder_mask.to(device)
prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0)
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device)
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
return prompt_embeds.to(device), boolean_prompt_mask.to(device)
def encode_image_classifier_free(self, prompt, num_samples_per_prompt, device):
with torch.no_grad():
if "clip-vit" in self.fea_encoder_name:
inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device)
img_fea = self.CLIP_model(**inputs).image_embeds
img_fea = self.linear_layer(img_fea)
else:
img_fea = self.img_fea_extractor(prompt)
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1)
b, t, n = encoder_hidden_states.shape
boolean_encoder_mask = torch.ones((b, t), dtype=torch.bool)
attention_mask = boolean_encoder_mask.to(device)
prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0)
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device)
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
return prompt_embeds.to(device), boolean_prompt_mask.to(device)
def encode_video_classifier_free(self, video_batch, text_batch, num_samples_per_prompt, device):
vid_feas = []
for i, video in enumerate(video_batch):
if text_batch:
vid_fea = self.vid_fea_extractor(video=video.to(device), text=text_batch[i])
else:
vid_fea = self.vid_fea_extractor(video=video.to(device))
vid_feas.append(vid_fea)
padding = 0
size = max(v.size(0) for v in vid_feas)
batch_size = len(vid_feas)
embed_size = vid_feas[0].size(1)
encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding)
boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
dst.copy_(src)
for i, v in enumerate(vid_feas):
copy_tensor(v, encoder_hidden_states[i][: len(v)])
boolean_encoder_mask[i, len(v):] = False
b, t, n = encoder_hidden_states.shape
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0)
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool)
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
encoder_hidden_states = torch.cat([negative_prompt_embeds, encoder_hidden_states])
boolean_encoder_mask = torch.cat([uncond_attention_mask, boolean_encoder_mask])
return encoder_hidden_states.to(device), boolean_encoder_mask.to(device)