Spaces:
Sleeping
Sleeping
File size: 32,348 Bytes
c673f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
import random
import numpy as np
from tqdm import tqdm
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from einops import repeat
import time
from tools.torch_tools import wav_to_fbank, sinusoidal_positional_embedding
from audioldm.audio.stft import TacotronSTFT
from audioldm.variational_autoencoder import AutoencoderKL
from audioldm.utils import default_audioldm_config, get_metadata
from transformers import CLIPTokenizer, AutoTokenizer, T5Tokenizer
from transformers import CLIPTextModel, T5EncoderModel, AutoModel
from transformers import CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from transformers import CLIPProcessor, CLIPModel
import diffusers
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers import AutoencoderKL as DiffuserAutoencoderKL
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode, RandomResizedCrop
from diffusers import AudioLDMPipeline
def build_pretrained_models(name):
checkpoint = torch.load(name, map_location="cpu")
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
config = default_audioldm_config(name)
vae_config = config["model"]["params"]["first_stage_config"]["params"]
vae_config["scale_factor"] = scale_factor
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(vae_state_dict)
fn_STFT = TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
vae.eval()
fn_STFT.eval()
return vae, fn_STFT
class EffNetb3(nn.Module):
def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True):
super(EffNetb3, self).__init__()
self.model_name = 'effnetb3'
self.pretrained = pretrained
# Create model
# self.effnet = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b3', pretrained=self.pretrained)
# torch.save(self.effnet, 'model.pth')
self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local')
#self.effnet.conv_stem = nn.Conv2d(1, 40, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
self.embedder = nn.Conv2d(384, embedding_dim, kernel_size=1, stride=1, padding=0)
def forward(self, x):
#out = self.effnet(x)
out = self.effnet.conv_stem(x)
out = self.effnet.bn1(out)
out = self.effnet.act1(out)
for i in range(len(self.effnet.blocks)):
out = self.effnet.blocks[i](out)
out = self.embedder(out)
return out
class EffNetb3_last_layer(nn.Module):
def __init__(self, pretrained_model_path, embedding_dim=1024, pretrained=True):
super(EffNetb3_last_layer, self).__init__()
self.model_name = 'effnetb3'
self.pretrained = pretrained
self.effnet = torch.hub.load(pretrained_model_path, 'efficientnet_b3', trust_repo=True, source='local')
self.effnet.classifier = nn.Linear(1536, embedding_dim)
def forward(self, x):
out = self.effnet(x)
return out.unsqueeze(-1)
class Clip4Video(nn.Module):
def __init__(self, model, embedding_dim=1024, pretrained=True, pe=False):
super(Clip4Video, self).__init__()
self.pretrained = pretrained
self.clip_vision = CLIPVisionModelWithProjection.from_pretrained(model)
self.clip_text = CLIPTextModelWithProjection.from_pretrained(model)
self.tokenizer = AutoTokenizer.from_pretrained(model)
input_dim = 512 if "clip-vit-base" in model else 768
self.linear_layer = nn.Linear(input_dim, embedding_dim)
self.pe = sinusoidal_positional_embedding(30, input_dim) if pe else None
print("*****PE*****") if pe else print("*****W/O PE*****")
def forward(self, text=None, image=None, video=None):
assert text is not None or image is not None or video is not None, "At least one of text, image or video should be provided"
if text is not None and video is None:
inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device)
out = self.clip_text(**inputs)
out = out.text_embeds.repeat(20, 1)
elif video is not None and text is None:
out = self.clip_vision(video.to(self.clip_vision.device)) # input video x: t * 3 * w * h
out = out.image_embeds # t * 512
if self.pe is not None:
out = out + self.pe[:out.shape[0], :].to(self.clip_vision.device)
# out['last_hidden_state'].shape # t * 50 * 768
# out['image_embeds'].shape # t * 512
elif text is not None and video is not None:
text_inputs = self.tokenizer([text], padding=True, truncation=True, return_tensors="pt", max_length=77).to(self.clip_text.device)
video_out = self.clip_vision(video.to(self.clip_vision.device))
video_out = video_out.image_embeds
text_out = self.clip_text(**text_inputs)
text_out = text_out.text_embeds.repeat(video_out.shape[0], 1)
# out = text_out + video_out
# concat
out = torch.cat([text_out, video_out], dim=0)
out = self.linear_layer(out) # t * 1024
return out
class AudioDiffusion(nn.Module):
def __init__(
self,
fea_encoder_name,
scheduler_name,
unet_model_name=None,
unet_model_config_path=None,
snr_gamma=None,
freeze_text_encoder=True,
uncondition=False,
img_pretrained_model_path=None,
task=None,
embedding_dim=1024,
pe=False
):
super().__init__()
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
self.fea_encoder_name = fea_encoder_name
self.scheduler_name = scheduler_name
self.unet_model_name = unet_model_name
self.unet_model_config_path = unet_model_config_path
self.snr_gamma = snr_gamma
self.freeze_text_encoder = freeze_text_encoder
self.uncondition = uncondition
self.task = task
self.pe = pe
# https://huggingface.co./docs/diffusers/v0.14.0/en/api/schedulers/overview
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
if unet_model_config_path:
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
print("unet_config", unet_config)
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
self.set_from = "random"
print("UNet initialized randomly.")
else:
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
self.set_from = "pre-trained"
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
print("UNet initialized from stable diffusion checkpoint.")
if self.task == "text2audio":
if "stable-diffusion" in self.fea_encoder_name:
self.tokenizer = CLIPTokenizer.from_pretrained(self.fea_encoder_name, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(self.fea_encoder_name, subfolder="text_encoder")
elif "t5" in self.fea_encoder_name and "Chinese" not in self.fea_encoder_name:
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name)
self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name)
elif "Chinese" in self.fea_encoder_name:
self.tokenizer = T5Tokenizer.from_pretrained(self.fea_encoder_name)
self.text_encoder = T5EncoderModel.from_pretrained(self.fea_encoder_name)
elif "clap" in self.fea_encoder_name:
self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
self.CLAP_model = laion_clap.CLAP_Module(enable_fusion=False)
self.CLAP_model.load_ckpt(self.fea_encoder_name)
elif "clip-vit" in self.fea_encoder_name:
# self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name)
# self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name)
self.CLIP_model = CLIPTextModelWithProjection.from_pretrained(self.fea_encoder_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name)
if "base" in self.fea_encoder_name:
self.linear_layer = nn.Linear(512, embedding_dim)
else:
self.linear_layer = nn.Linear(768, embedding_dim)
else:
self.tokenizer = AutoTokenizer.from_pretrained(self.fea_encoder_name)
self.text_encoder = AutoModel.from_pretrained(self.fea_encoder_name)
elif self.task == "image2audio":
if "clip-vit" in self.fea_encoder_name:
self.CLIP_model = CLIPModel.from_pretrained(self.fea_encoder_name)
self.CLIP_processor = CLIPProcessor.from_pretrained(self.fea_encoder_name)
self.linear_layer = nn.Linear(512, embedding_dim)
# self.img_fea_extractor = EffNetb3(img_pretrained_model_path)
else:
self.img_fea_extractor = EffNetb3_last_layer(img_pretrained_model_path)
elif self.task == "video2audio":
self.vid_fea_extractor = Clip4Video(model=self.fea_encoder_name, embedding_dim=embedding_dim, pe=pe)
def compute_snr(self, timesteps):
"""
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = self.noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod**0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
if self.freeze_text_encoder:
with torch.no_grad():
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
else:
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_text_CLAP(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(prompt, padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, return_tensors="pt")
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
if self.freeze_text_encoder:
with torch.no_grad():
encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt)
else:
encoder_hidden_states = self.CLAP_model.model.get_text_embedding(prompt)
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_image(self, prompt, device):
if "clip-vit" in self.fea_encoder_name:
with torch.no_grad():
inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device)
encoder_hidden_states = self.CLIP_model(**inputs).image_embeds
encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024
encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device)
else:
img_fea = self.img_fea_extractor(prompt)
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1)
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
boolean_encoder_mask = boolean_encoder_mask.to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_video(self, video_batch, text=None, device=None):
vid_feas = []
for i, video in enumerate(video_batch):
if text:
vid_fea = self.vid_fea_extractor(video=video, text=text[i]) # t * fea_dim
else:
vid_fea = self.vid_fea_extractor(video=video)
vid_feas.append(vid_fea)
padding = 0
size = max(v.size(0) for v in vid_feas)
batch_size = len(vid_feas)
embed_size = vid_feas[0].size(1)
encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding)
boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
dst.copy_(src)
for i, v in enumerate(vid_feas):
copy_tensor(v, encoder_hidden_states[i][: len(v)])
boolean_encoder_mask[i, len(v):] = False
return encoder_hidden_states.to(device), boolean_encoder_mask.to(device)
def encode_text_CLIP(self, prompt, device):
# tmp_image = np.ones((512, 512, 3))
# with torch.no_grad():
# inputs = self.CLIP_processor(text=prompt, images=tmp_image, return_tensors="pt", padding=True, max_length=77, truncation=True).to(device)
# encoder_hidden_states = self.CLIP_model(**inputs).text_embeds # b * 768
text_inputs = self.tokenizer(prompt, padding=True, truncation=True, return_tensors="pt", max_length=77).to(device)
encoder_hidden_states = self.CLIP_model(**text_inputs).text_embeds
encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024
encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device)
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
boolean_encoder_mask = boolean_encoder_mask.to(device)
return encoder_hidden_states, boolean_encoder_mask
def forward(self, latents, text=None, video=None, image=None, validation_mode=False, device=None):
num_train_timesteps = self.noise_scheduler.num_train_timesteps
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
# encoder_hidden_states.shape [b, t, f]
if self.task == "text2audio":
if "clip-vit" in self.fea_encoder_name:
encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(text, device)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text(text)
if self.uncondition:
mask_indices = [k for k in range(len(text)) if random.random() < 0.1]
# mask_indices = [k for k in range(len(prompt))]
if len(mask_indices) > 0:
encoder_hidden_states[mask_indices] = 0
elif self.task == "image2audio":
encoder_hidden_states, boolean_encoder_mask = self.encode_image(image, device=device)
elif self.task == "video2audio":
encoder_hidden_states, boolean_encoder_mask = self.encode_video(video, text, device=device)
bsz = latents.shape[0]
if validation_mode:
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
else:
# Sample a random timestep for each instance
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
timesteps = timesteps.long()
noise = torch.randn_like(latents)
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
# Get the target for loss depending on the prediction type
if self.noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif self.noise_scheduler.config.prediction_type == "v_prediction":
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
if self.set_from == "random":
model_pred = self.unet(
noisy_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
elif self.set_from == "pre-trained":
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
model_pred = self.unet(
compressed_latents, timesteps, encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
if self.snr_gamma is None:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
snr = self.compute_snr(timesteps)
mse_loss_weights = (
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
return loss
@torch.no_grad()
def inference(self, inference_scheduler, text=None, video=None, image=None, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
disable_progress=True, device=None):
start = time.time()
classifier_free_guidance = guidance_scale > 1.0
#print("ldm time 0", time.time()-start, prompt)
if self.task == "text2audio":
batch_size = len(text) * num_samples_per_prompt
if classifier_free_guidance:
if "clip-vit" in self.fea_encoder_name:
encoder_hidden_states, boolean_encoder_mask = self.encode_text_clip_classifier_free(text, num_samples_per_prompt, device=device)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(text, num_samples_per_prompt)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text(text)
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0)
elif self.task == "image2audio":
if classifier_free_guidance:
encoder_hidden_states, boolean_encoder_mask = self.encode_image_classifier_free(image, num_samples_per_prompt, device=device)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_image_no_grad(image, device=device)
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
boolean_encoder_mask = boolean_encoder_mask.repeat_interleave(num_samples_per_prompt, 0)
elif self.task == "video2audio":
batch_size = len(video) * num_samples_per_prompt
encoder_hidden_states, boolean_encoder_mask = self.encode_video_classifier_free(video, text, num_samples_per_prompt, device=device)
# import pdb;pdb.set_trace()
#print("ldm time 1", time.time()-start)
inference_scheduler.set_timesteps(num_steps, device=device)
timesteps = inference_scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, encoder_hidden_states.dtype, device)
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
progress_bar = tqdm(range(num_steps), disable=disable_progress)
#print("ldm time 2", time.time()-start, timesteps)
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
#print("ldm emu", i, time.time()-start)
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=boolean_encoder_mask
).sample
# perform guidance
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
progress_bar.update(1)
#print("ldm time 3", time.time()-start)
if self.set_from == "pre-trained":
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
return latents
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
shape = (batch_size, num_channels_latents, 256, 16)
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * inference_scheduler.init_noise_sigma
return latents
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""] * len(prompt)
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
# import pdb;pdb.set_trace()
return prompt_embeds, boolean_prompt_mask
def encode_image_no_grad(self, prompt, device):
with torch.no_grad():
img_fea = self.img_fea_extractor(prompt)
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1)
boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
boolean_encoder_mask = boolean_encoder_mask.to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_text_clip_classifier_free(self, prompt, num_samples_per_prompt, device):
# 如果想测试输入文本的效果,就用下面两行
with torch.no_grad():
encoder_hidden_states, boolean_encoder_mask = self.encode_text_CLIP(prompt, device)
# if "clip-vit" in self.fea_encoder_name:
# with torch.no_grad():
# inputs = self.CLIP_processor(text=['aaa'], images=prompt, return_tensors="pt", padding=True).to(device)
# encoder_hidden_states = self.CLIP_model(**inputs).image_embeds # b * 768
# encoder_hidden_states = self.linear_layer(encoder_hidden_states) # b * 1024
# encoder_hidden_states = encoder_hidden_states.unsqueeze(1).to(device)
# boolean_encoder_mask = torch.ones((encoder_hidden_states.shape[0], encoder_hidden_states.shape[1]), dtype=torch.bool)
# boolean_encoder_mask = boolean_encoder_mask.to(device)
b, t, n = encoder_hidden_states.shape
attention_mask = boolean_encoder_mask.to(device)
prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0)
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device)
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
return prompt_embeds.to(device), boolean_prompt_mask.to(device)
def encode_image_classifier_free(self, prompt, num_samples_per_prompt, device):
with torch.no_grad():
if "clip-vit" in self.fea_encoder_name:
inputs = self.CLIP_processor(text=["aaa"], images=prompt, return_tensors="pt", padding=True).to(device)
img_fea = self.CLIP_model(**inputs).image_embeds
img_fea = self.linear_layer(img_fea)
else:
img_fea = self.img_fea_extractor(prompt)
encoder_hidden_states = img_fea.view(img_fea.shape[0], img_fea.shape[1], -1).permute(0, 2, 1)
b, t, n = encoder_hidden_states.shape
boolean_encoder_mask = torch.ones((b, t), dtype=torch.bool)
attention_mask = boolean_encoder_mask.to(device)
prompt_embeds = encoder_hidden_states.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0)
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool).to(device)
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
boolean_prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
return prompt_embeds.to(device), boolean_prompt_mask.to(device)
def encode_video_classifier_free(self, video_batch, text_batch, num_samples_per_prompt, device):
vid_feas = []
for i, video in enumerate(video_batch):
if text_batch:
vid_fea = self.vid_fea_extractor(video=video.to(device), text=text_batch[i])
else:
vid_fea = self.vid_fea_extractor(video=video.to(device))
vid_feas.append(vid_fea)
padding = 0
size = max(v.size(0) for v in vid_feas)
batch_size = len(vid_feas)
embed_size = vid_feas[0].size(1)
encoder_hidden_states = vid_feas[0].new(batch_size, size, embed_size).fill_(padding)
boolean_encoder_mask = torch.ones((batch_size, size), dtype=torch.bool)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
dst.copy_(src)
for i, v in enumerate(vid_feas):
copy_tensor(v, encoder_hidden_states[i][: len(v)])
boolean_encoder_mask[i, len(v):] = False
b, t, n = encoder_hidden_states.shape
negative_prompt_embeds = encoder_hidden_states.new(b, t, n).fill_(0)
uncond_attention_mask = torch.ones((b, t), dtype=torch.bool)
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
encoder_hidden_states = torch.cat([negative_prompt_embeds, encoder_hidden_states])
boolean_encoder_mask = torch.cat([uncond_attention_mask, boolean_encoder_mask])
return encoder_hidden_states.to(device), boolean_encoder_mask.to(device) |