Spaces:
Running
on
A10G
Running
on
A10G
File size: 13,563 Bytes
5a510e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# pylint: disable=E1101
# scripts/inference.py
"""
This script contains the main inference pipeline for processing audio and image inputs to generate a video output.
The script imports necessary packages and classes, defines a neural network model,
and contains functions for processing audio embeddings and performing inference.
The main inference process is outlined in the following steps:
1. Initialize the configuration.
2. Set up runtime variables.
3. Prepare the input data for inference (source image, face mask, and face embeddings).
4. Process the audio embeddings.
5. Build and freeze the model and scheduler.
6. Run the inference loop and save the result.
Usage:
This script can be run from the command line with the following arguments:
- audio_path: Path to the audio file.
- image_path: Path to the source image.
- face_mask_path: Path to the face mask image.
- face_emb_path: Path to the face embeddings file.
- output_path: Path to save the output video.
Example:
python scripts/inference.py --audio_path audio.wav --image_path image.jpg
--face_mask_path face_mask.png --face_emb_path face_emb.pt --output_path output.mp4
"""
import argparse
import os
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from torch import nn
from hallo.animate.face_animate import FaceAnimatePipeline
from hallo.datasets.audio_processor import AudioProcessor
from hallo.datasets.image_processor import ImageProcessor
from hallo.models.audio_proj import AudioProjModel
from hallo.models.face_locator import FaceLocator
from hallo.models.image_proj import ImageProjModel
from hallo.models.unet_2d_condition import UNet2DConditionModel
from hallo.models.unet_3d import UNet3DConditionModel
from hallo.utils.util import tensor_to_video
class Net(nn.Module):
"""
The Net class combines all the necessary modules for the inference process.
Args:
reference_unet (UNet2DConditionModel): The UNet2DConditionModel used as a reference for inference.
denoising_unet (UNet3DConditionModel): The UNet3DConditionModel used for denoising the input audio.
face_locator (FaceLocator): The FaceLocator model used to locate the face in the input image.
imageproj (nn.Module): The ImageProjector model used to project the source image onto the face.
audioproj (nn.Module): The AudioProjector model used to project the audio embeddings onto the face.
"""
def __init__(
self,
reference_unet: UNet2DConditionModel,
denoising_unet: UNet3DConditionModel,
face_locator: FaceLocator,
imageproj,
audioproj,
):
super().__init__()
self.reference_unet = reference_unet
self.denoising_unet = denoising_unet
self.face_locator = face_locator
self.imageproj = imageproj
self.audioproj = audioproj
def forward(self,):
"""
empty function to override abstract function of nn Module
"""
def get_modules(self):
"""
Simple method to avoid too-few-public-methods pylint error
"""
return {
"reference_unet": self.reference_unet,
"denoising_unet": self.denoising_unet,
"face_locator": self.face_locator,
"imageproj": self.imageproj,
"audioproj": self.audioproj,
}
def process_audio_emb(audio_emb):
"""
Process the audio embedding to concatenate with other tensors.
Parameters:
audio_emb (torch.Tensor): The audio embedding tensor to process.
Returns:
concatenated_tensors (List[torch.Tensor]): The concatenated tensor list.
"""
concatenated_tensors = []
for i in range(audio_emb.shape[0]):
vectors_to_concat = [
audio_emb[max(min(i + j, audio_emb.shape[0]-1), 0)]for j in range(-2, 3)]
concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0))
audio_emb = torch.stack(concatenated_tensors, dim=0)
return audio_emb
def inference_process(args: argparse.Namespace):
"""
Perform inference processing.
Args:
args (argparse.Namespace): Command-line arguments.
This function initializes the configuration for the inference process. It sets up the necessary
modules and variables to prepare for the upcoming inference steps.
"""
# 1. init config
config = OmegaConf.load(args.config)
config = OmegaConf.merge(config, vars(args))
source_image_path = config.source_image
driving_audio_path = config.driving_audio
save_path = config.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
motion_scale = [config.pose_weight, config.face_weight, config.lip_weight]
if args.checkpoint is not None:
config.audio_ckpt_dir = args.checkpoint
# 2. runtime variables
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
weight_dtype = torch.float32
# 3. prepare inference data
# 3.1 prepare source image, face mask, face embeddings
img_size = (config.data.source_image.width,
config.data.source_image.height)
clip_length = config.data.n_sample_frames
face_analysis_model_path = config.face_analysis.model_path
with ImageProcessor(img_size, face_analysis_model_path) as image_processor:
source_image_pixels, \
source_image_face_region, \
source_image_face_emb, \
source_image_full_mask, \
source_image_face_mask, \
source_image_lip_mask = image_processor.preprocess(
source_image_path, save_path, config.face_expand_ratio)
# 3.2 prepare audio embeddings
sample_rate = config.data.driving_audio.sample_rate
assert sample_rate == 16000, "audio sample rate must be 16000"
fps = config.data.export_video.fps
wav2vec_model_path = config.wav2vec.model_path
wav2vec_only_last_features = config.wav2vec.features == "last"
audio_separator_model_file = config.audio_separator.model_path
with AudioProcessor(
sample_rate,
fps,
wav2vec_model_path,
wav2vec_only_last_features,
os.path.dirname(audio_separator_model_file),
os.path.basename(audio_separator_model_file),
os.path.join(save_path, "audio_preprocess")
) as audio_processor:
audio_emb = audio_processor.preprocess(driving_audio_path)
# 4. build modules
sched_kwargs = OmegaConf.to_container(config.noise_scheduler_kwargs)
if config.enable_zero_snr:
sched_kwargs.update(
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction",
)
val_noise_scheduler = DDIMScheduler(**sched_kwargs)
sched_kwargs.update({"beta_schedule": "scaled_linear"})
vae = AutoencoderKL.from_pretrained(config.vae.model_path)
reference_unet = UNet2DConditionModel.from_pretrained(
config.base_model_path, subfolder="unet")
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(
config.unet_additional_kwargs),
use_landmark=False,
)
face_locator = FaceLocator(conditioning_embedding_channels=320)
image_proj = ImageProjModel(
cross_attention_dim=denoising_unet.config.cross_attention_dim,
clip_embeddings_dim=512,
clip_extra_context_tokens=4,
)
audio_proj = AudioProjModel(
seq_len=5,
blocks=12, # use 12 layers' hidden states of wav2vec
channels=768, # audio embedding channel
intermediate_dim=512,
output_dim=768,
context_tokens=32,
).to(device=device, dtype=weight_dtype)
audio_ckpt_dir = config.audio_ckpt_dir
# Freeze
vae.requires_grad_(False)
image_proj.requires_grad_(False)
reference_unet.requires_grad_(False)
denoising_unet.requires_grad_(False)
face_locator.requires_grad_(False)
audio_proj.requires_grad_(False)
reference_unet.enable_gradient_checkpointing()
denoising_unet.enable_gradient_checkpointing()
net = Net(
reference_unet,
denoising_unet,
face_locator,
image_proj,
audio_proj,
)
m,u = net.load_state_dict(
torch.load(
os.path.join(audio_ckpt_dir, "net.pth"),
map_location="cpu",
),
)
assert len(m) == 0 and len(u) == 0, "Fail to load correct checkpoint."
print("loaded weight from ", os.path.join(audio_ckpt_dir, "net.pth"))
# 5. inference
pipeline = FaceAnimatePipeline(
vae=vae,
reference_unet=net.reference_unet,
denoising_unet=net.denoising_unet,
face_locator=net.face_locator,
scheduler=val_noise_scheduler,
image_proj=net.imageproj,
)
pipeline.to(device=device, dtype=weight_dtype)
audio_emb = process_audio_emb(audio_emb)
source_image_pixels = source_image_pixels.unsqueeze(0)
source_image_face_region = source_image_face_region.unsqueeze(0)
source_image_face_emb = source_image_face_emb.reshape(1, -1)
source_image_face_emb = torch.tensor(source_image_face_emb)
source_image_full_mask = [
(mask.repeat(clip_length, 1))
for mask in source_image_full_mask
]
source_image_face_mask = [
(mask.repeat(clip_length, 1))
for mask in source_image_face_mask
]
source_image_lip_mask = [
(mask.repeat(clip_length, 1))
for mask in source_image_lip_mask
]
times = audio_emb.shape[0] // clip_length
tensor_result = []
generator = torch.manual_seed(42)
for t in range(times):
if len(tensor_result) == 0:
# The first iteration
motion_zeros = source_image_pixels.repeat(
config.data.n_motion_frames, 1, 1, 1)
motion_zeros = motion_zeros.to(
dtype=source_image_pixels.dtype, device=source_image_pixels.device)
pixel_values_ref_img = torch.cat(
[source_image_pixels, motion_zeros], dim=0) # concat the ref image and the first motion frames
else:
motion_frames = tensor_result[-1][0]
motion_frames = motion_frames.permute(1, 0, 2, 3)
motion_frames = motion_frames[0-config.data.n_motion_frames:]
motion_frames = motion_frames * 2.0 - 1.0
motion_frames = motion_frames.to(
dtype=source_image_pixels.dtype, device=source_image_pixels.device)
pixel_values_ref_img = torch.cat(
[source_image_pixels, motion_frames], dim=0) # concat the ref image and the motion frames
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)
audio_tensor = audio_emb[
t * clip_length: min((t + 1) * clip_length, audio_emb.shape[0])
]
audio_tensor = audio_tensor.unsqueeze(0)
audio_tensor = audio_tensor.to(
device=net.audioproj.device, dtype=net.audioproj.dtype)
audio_tensor = net.audioproj(audio_tensor)
pipeline_output = pipeline(
ref_image=pixel_values_ref_img,
audio_tensor=audio_tensor,
face_emb=source_image_face_emb,
face_mask=source_image_face_region,
pixel_values_full_mask=source_image_full_mask,
pixel_values_face_mask=source_image_face_mask,
pixel_values_lip_mask=source_image_lip_mask,
width=img_size[0],
height=img_size[1],
video_length=clip_length,
num_inference_steps=config.inference_steps,
guidance_scale=config.cfg_scale,
generator=generator,
motion_scale=motion_scale,
)
tensor_result.append(pipeline_output.videos)
tensor_result = torch.cat(tensor_result, dim=2)
tensor_result = tensor_result.squeeze(0)
output_file = config.output
# save the result after all iteration
tensor_to_video(tensor_result, output_file, driving_audio_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--config", default="configs/inference/default.yaml")
parser.add_argument("--source_image", type=str, required=False,
help="source image", default="test_data/source_images/6.jpg")
parser.add_argument("--driving_audio", type=str, required=False,
help="driving audio", default="test_data/driving_audios/singing/sing_4.wav")
parser.add_argument(
"--output", type=str, help="output video file name", default=".cache/output.mp4")
parser.add_argument(
"--pose_weight", type=float, help="weight of pose", default=1.0)
parser.add_argument(
"--face_weight", type=float, help="weight of face", default=1.0)
parser.add_argument(
"--lip_weight", type=float, help="weight of lip", default=1.0)
parser.add_argument(
"--face_expand_ratio", type=float, help="face region", default=1.2)
parser.add_argument(
"--checkpoint", type=str, help="which checkpoint", default=None)
command_line_args = parser.parse_args()
inference_process(command_line_args)
|