# Text-Guided-Image-Colorization This project utilizes the power of **Stable Diffusion (SDXL/SDXL-Light)** and the **BLIP (Bootstrapping Language-Image Pre-training)** captioning model to provide an interactive image colorization experience. Users can influence the generated colors of objects within images, making the colorization process more personalized and creative. ## Table of Contents - [Features](#features) - [Installation](#installation) - [Quick Start](#quick-start) - [Dataset Usage](#dataset-usage) - [Training](#training) - [Evaluation](#evaluation) - [Results](#results) - [License](#license) ## Features - **Interactive Colorization**: Users can specify desired colors for different objects in the image. - **ControlNet Approach**: Enhanced colorization capabilities through retraining with ControlNet, allowing SDXL to better adapt to the image colorization task. - **High-Quality Outputs**: Leverage the latest advancements in diffusion models to generate vibrant and realistic colorizations. - **User-Friendly Interface**: Easy-to-use interface for seamless interaction with the model. ## Installation To set up the project locally, follow these steps: 1. **Clone the Repository**: ```bash git clone https://github.com/nick8592/text-guided-image-colorization.git cd text-guided-image-colorization ``` 2. **Install Dependencies**: Make sure you have Python 3.7 or higher installed. Then, install the required packages: ```bash pip install -r requirements.txt ``` Install `torch` and `torchvision` matching your CUDA version: ```bash pip install torch torchvision --index-url https://download.pytorch.org/whl/cuXXX ``` Replace `XXX` with your CUDA version (e.g., `118` for CUDA 11.8). For more info, see [PyTorch Get Started](https://pytorch.org/get-started/locally/). 3. **Download Pre-trained Models**: | Models | Hugging Face (Recommand) | Other | |:---:|:---:|:---:| |SDXL-Lightning Caption|[link](https://huggingface.co./nickpai/sdxl_light_caption_output)|[link](https://gofile.me/7uE8s/FlEhfpWPw) (2kNJfV)| |SDXL-Lightning Custom Caption (Recommand)|[link](https://huggingface.co./nickpai/sdxl_light_custom_caption_output)|[link](https://gofile.me/7uE8s/AKmRq5sLR) (KW7Fpi)| ```bash text-guided-image-colorization/sdxl_light_caption_output └── checkpoint-30000 ├── controlnet │ ├── diffusion_pytorch_model.safetensors │ └── config.json ├── optimizer.bin ├── random_states_0.pkl ├── scaler.pt └── scheduler.bin ``` ## Quick Start 1. Run the `gradio_ui.py` script: ```bash python gradio_ui.py ``` 2. Open the provided URL in your web browser to access the Gradio-based user interface. 3. Upload an image and use the interface to control the colors of specific objects in the image. But still the model can generate images without a specific prompt. 4. The model will generate a colorized version of the image based on your input (or automatic). See the [demo video](https://x.com/weichenpai/status/1829513077588631987). ![Gradio UI](images/gradio_ui.png) ## Dataset Usage You can find more details about the dataset usage in the [Dataset-for-Image-Colorization](https://github.com/nick8592/Dataset-for-Image-Colorization). ## Training For training, you can use one of the following scripts: - `train_controlnet.sh`: Trains a model using [Stable Diffusion v2](https://huggingface.co./stabilityai/stable-diffusion-2-1) - `train_controlnet_sdxl.sh`: Trains a model using [SDXL](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0) - `train_controlnet_sdxl_light.sh`: Trains a model using [SDXL-Lightning](https://huggingface.co./ByteDance/SDXL-Lightning) Although the training code for SDXL is provided, due to a lack of GPU resources, I wasn't able to train the model by myself. Therefore, there might be some errors when you try to train the model. ## Evaluation For evaluation, you can use one of the following scripts: - `eval_controlnet.sh`: Evaluates the model using [Stable Diffusion v2](https://huggingface.co./stabilityai/stable-diffusion-2-1) for a folder of images. - `eval_controlnet_sdxl_light.sh`: Evaluates the model using [SDXL-Lightning](https://huggingface.co./ByteDance/SDXL-Lightning) for a folder of images. - `eval_controlnet_sdxl_light_single.sh`: Evaluates the model using [SDXL-Lightning](https://huggingface.co./ByteDance/SDXL-Lightning) for a single image. ## Results ### Prompt-Guided | Caption | Condition 1 | Condition 2 | Condition 3 | |:---:|:---:|:---:|:---:| | ![000000022935_gray.jpg](images/000000022935_gray.jpg) | ![000000022935_green_shirt_on_right_girl.jpeg](images/000000022935_green_shirt_on_right_girl.jpeg) | ![000000022935_purple_shirt_on_right_girl.jpeg](images/000000022935_purple_shirt_on_right_girl.jpeg) |![000000022935_red_shirt_on_right_girl.jpeg](images/000000022935_red_shirt_on_right_girl.jpeg) | | a photography of a woman in a soccer uniform kicking a soccer ball | + "green shirt"| + "purple shirt" | + "red shirt" | | ![000000041633_gray.jpg](images/000000041633_gray.jpg) | ![000000041633_bright_red_car.jpeg](images/000000041633_bright_red_car.jpeg) | ![000000041633_dark_blue_car.jpeg](images/000000041633_dark_blue_car.jpeg) |![000000041633_black_car.jpeg](images/000000041633_black_car.jpeg) | | a photography of a photo of a truck | + "bright red car"| + "dark blue car" | + "black car" | | ![000000286708_gray.jpg](images/000000286708_gray.jpg) | ![000000286708_orange_hat.jpeg](images/000000286708_orange_hat.jpeg) | ![000000286708_pink_hat.jpeg](images/000000286708_pink_hat.jpeg) |![000000286708_yellow_hat.jpeg](images/000000286708_yellow_hat.jpeg) | | a photography of a cat wearing a hat on his head | + "orange hat"| + "pink hat" | + "yellow hat" | ### Prompt-Free Ground truth images are provided solely for reference purpose in the image colorization task. | Grayscale Image | Colorized Result | Ground Truth | |:---:|:---:|:---:| | ![000000025560_gray.jpg](images/000000025560_gray.jpg) | ![000000025560_color.jpg](images/000000025560_color.jpg) | ![000000025560_gt.jpg](images/000000025560_gt.jpg) | | ![000000065736_gray.jpg](images/000000065736_gray.jpg) | ![000000065736_color.jpg](images/000000065736_color.jpg) | ![000000065736_gt.jpg](images/000000065736_gt.jpg) | | ![000000091779_gray.jpg](images/000000091779_gray.jpg) | ![000000091779_color.jpg](images/000000091779_color.jpg) | ![000000091779_gt.jpg](images/000000091779_gt.jpg) | | ![000000092177_gray.jpg](images/000000092177_gray.jpg) | ![000000092177_color.jpg](images/000000092177_color.jpg) | ![000000092177_gt.jpg](images/000000092177_gt.jpg) | | ![000000166426_gray.jpg](images/000000166426_gray.jpg) | ![000000166426_color.jpg](images/000000166426_color.jpg) | ![000000025560_gt.jpg](images/000000166426_gt.jpg) | ## License This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.