Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import torch | |
from spectro import wav_bytes_from_spectrogram_image | |
from diffusers import StableDiffusionPipeline | |
model_id = "riffusion/riffusion-model-v1" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
def predict(prompt): | |
spec = pipe(prompt).images[0] | |
print(spec) | |
wav = wav_bytes_from_spectrogram_image(spec) | |
with open("output.wav", "wb") as f: | |
f.write(wav[0].getbuffer()) | |
return spec, 'output.wav' | |
title = """ | |
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
margin-bottom: 10px; | |
" | |
> | |
<h1 style="font-weight: 600; margin-bottom: 7px;"> | |
Riffusion real-time music generation | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;"> | |
Describe a musical prompt, generate music by getting a spectrogram image & sound. | |
</div> | |
""" | |
article = """ | |
<p style="font-size: 0.8em;line-height: 1.2em;border: 1px solid #374151;border-radius: 8px;padding: 20px;"> | |
About the model: Riffusion is a latent text-to-image diffusion model capable of generating spectrogram images given any text input. These spectrograms can be converted into audio clips. | |
<br />β | |
<br />The Riffusion model was created by fine-tuning the Stable-Diffusion-v1-5 checkpoint. | |
<br />β | |
<br />The model is intended for research purposes only. Possible research areas and tasks include | |
generation of artworks, audio, and use in creative processes, applications in educational or creative tools, research on generative models. | |
</p> | |
<div class="footer"> | |
<p> | |
<a href="https://huggingface.co./riffusion/riffusion-model-v1" target="_blank">Riffusion model</a> by Seth Forsgren and Hayk Martiros - | |
Demo by π€ <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> | |
</p> | |
</div> | |
<p style="text-align: center;font-size: 94%"> | |
Do you need faster results ? You can skip the queue by duplicating this space: | |
<span style="display: flex;align-items: center;justify-content: center;height: 30px;"> | |
<a href="https://huggingface.co./fffiloni/spectrogram-to-music?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> | |
</span> | |
</p> | |
""" | |
css = ''' | |
#col-container, #col-container-2 {max-width: 510px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
div#record_btn > .mt-6 { | |
margin-top: 0!important; | |
} | |
div#record_btn > .mt-6 button { | |
width: 100%; | |
height: 40px; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 10px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
''' | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
prompt_input = gr.Textbox(placeholder="a cat diva singing in a New York jazz club") | |
send_btn = gr.Button("Get a new spectrogram ! ") | |
with gr.Column(elem_id="col-container-2"): | |
spectrogram_output = gr.Image(label="spectrogram image result") | |
sound_output = gr.Audio(type='filepath', label="spectrogram sound") | |
gr.HTML(article) | |
send_btn.click(predict, inputs=[prompt_input], outputs=[spectrogram_output, sound_output]) | |
demo.queue(max_size=250).launch(debug=True) | |