Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
""" | |
Audio processing tools to convert between spectrogram images and waveforms. | |
""" | |
import io | |
import typing as T | |
import numpy as np | |
from PIL import Image | |
import pydub | |
from scipy.io import wavfile | |
import torch | |
import torchaudio | |
from diffusers import StableDiffusionPipeline | |
model_id = "riffusion/riffusion-model-v1" | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
def get_spectro(prompt): | |
image = pipe(prompt).images[0] | |
return image | |
def wav_bytes_from_spectrogram_image(image: Image.Image) -> T.Tuple[io.BytesIO, float]: | |
""" | |
Reconstruct a WAV audio clip from a spectrogram image. Also returns the duration in seconds. | |
""" | |
max_volume = 50 | |
power_for_image = 0.25 | |
Sxx = spectrogram_from_image(image, max_volume=max_volume, power_for_image=power_for_image) | |
sample_rate = 44100 # [Hz] | |
clip_duration_ms = 5000 # [ms] | |
bins_per_image = 512 | |
n_mels = 512 | |
# FFT parameters | |
window_duration_ms = 100 # [ms] | |
padded_duration_ms = 400 # [ms] | |
step_size_ms = 10 # [ms] | |
# Derived parameters | |
num_samples = int(image.width / float(bins_per_image) * clip_duration_ms) * sample_rate | |
n_fft = int(padded_duration_ms / 1000.0 * sample_rate) | |
hop_length = int(step_size_ms / 1000.0 * sample_rate) | |
win_length = int(window_duration_ms / 1000.0 * sample_rate) | |
samples = waveform_from_spectrogram( | |
Sxx=Sxx, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
num_samples=num_samples, | |
sample_rate=sample_rate, | |
mel_scale=True, | |
n_mels=n_mels, | |
max_mel_iters=200, | |
num_griffin_lim_iters=32, | |
) | |
wav_bytes = io.BytesIO() | |
wavfile.write(wav_bytes, sample_rate, samples.astype(np.int16)) | |
wav_bytes.seek(0) | |
duration_s = float(len(samples)) / sample_rate | |
return wav_bytes | |
def spectrogram_from_image( | |
image: Image.Image, max_volume: float = 50, power_for_image: float = 0.25 | |
) -> np.ndarray: | |
""" | |
Compute a spectrogram magnitude array from a spectrogram image. | |
TODO(hayk): Add image_from_spectrogram and call this out as the reverse. | |
""" | |
# Convert to a numpy array of floats | |
data = np.array(image).astype(np.float32) | |
# Flip Y take a single channel | |
data = data[::-1, :, 0] | |
# Invert | |
data = 255 - data | |
# Rescale to max volume | |
data = data * max_volume / 255 | |
# Reverse the power curve | |
data = np.power(data, 1 / power_for_image) | |
return data | |
def waveform_from_spectrogram( | |
Sxx: np.ndarray, | |
n_fft: int, | |
hop_length: int, | |
win_length: int, | |
num_samples: int, | |
sample_rate: int, | |
mel_scale: bool = True, | |
n_mels: int = 512, | |
max_mel_iters: int = 200, | |
num_griffin_lim_iters: int = 32, | |
device: str = "cuda:0", | |
) -> np.ndarray: | |
""" | |
Reconstruct a waveform from a spectrogram. | |
This is an approximate inverse of spectrogram_from_waveform, using the Griffin-Lim algorithm | |
to approximate the phase. | |
""" | |
Sxx_torch = torch.from_numpy(Sxx).to(device) | |
# TODO(hayk): Make this a class that caches the two things | |
if mel_scale: | |
mel_inv_scaler = torchaudio.transforms.InverseMelScale( | |
n_mels=n_mels, | |
sample_rate=sample_rate, | |
f_min=0, | |
f_max=10000, | |
n_stft=n_fft // 2 + 1, | |
norm=None, | |
mel_scale="htk", | |
max_iter=max_mel_iters, | |
).to(device) | |
Sxx_torch = mel_inv_scaler(Sxx_torch) | |
griffin_lim = torchaudio.transforms.GriffinLim( | |
n_fft=n_fft, | |
win_length=win_length, | |
hop_length=hop_length, | |
power=1.0, | |
n_iter=num_griffin_lim_iters, | |
).to(device) | |
waveform = griffin_lim(Sxx_torch).cpu().numpy() | |
return waveform | |
gr.Interface(fn=get_spectro, inputs=[gr.Textbox()], outputs=[gr.Image()]).launch() |