File size: 11,241 Bytes
5494b47
8c12ff1
cc7ba83
f036864
 
8c12ff1
cc7ba83
 
 
 
8c12ff1
 
 
5494b47
2409154
5494b47
cc7ba83
5494b47
dfd27a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c12ff1
 
a408b27
 
 
5494b47
8c12ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2ca5bb
8c12ff1
b2ca5bb
9f3df14
 
 
6fcf1e7
b2ca5bb
6fcf1e7
b2ca5bb
8c12ff1
54c5b48
e5b1cf7
556c87e
 
 
2409154
556c87e
 
 
 
8c12ff1
556c87e
 
8c12ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46ad1b
8c12ff1
 
 
a408b27
c5267aa
a408b27
c5267aa
 
 
e5b1cf7
 
e0afa92
c5267aa
b486fa5
c5267aa
f69042b
c46ad1b
a408b27
54c5b48
5494b47
cc7ba83
 
 
7baf528
cc7ba83
 
 
 
c81be92
cc7ba83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de444a
 
 
6fcf1e7
 
 
da007b4
1e92de5
da007b4
5494b47
6be2e5b
 
5494b47
cc7ba83
 
 
da007b4
cc7ba83
652a305
cc7ba83
 
da007b4
cc7ba83
 
 
 
 
 
 
 
 
ce094ab
6be2e5b
4d5a7e8
b2ca5bb
 
 
 
 
 
 
 
 
 
6ae70fa
b2ca5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c12ff1
b2ca5bb
a3af72e
8de444a
a3af72e
6fcf1e7
a3af72e
 
 
6fcf1e7
 
a3af72e
b2ca5bb
6be2e5b
02cde20
 
 
 
54c5b48
02cde20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b1cf7
 
 
 
 
0edac8b
e5b1cf7
 
 
 
 
 
0edac8b
e5b1cf7
 
 
02cde20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6179ee2
54c5b48
5494b47
 
 
02cde20
 
b2ca5bb
02cde20
 
 
6be2e5b
 
8c12ff1
b2ca5bb
f036864
6be2e5b
5494b47
 
e5b1cf7
54c5b48
5494b47
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import gradio as gr
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
import os 
import random
import spaces

is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)

fs = HfFileSystem(token=hf_token)
api = HfApi()

import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL

device="cuda" if torch.cuda.is_available() else "cpu"

def get_files(file_paths):
    last_files = {}  # Dictionary to store the last file for each path

    for file_path in file_paths:
        # Split the file path into directory and file components
        directory, file_name = file_path.rsplit('/', 1)
    
        # Update the last file for the current path
        last_files[directory] = file_name
    
    # Extract the last files from the dictionary
    result = list(last_files.values())

    return result

def load_model(custom_model):

    if custom_model == "":
        gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
        raise gr.Error("You forgot to define Model ID.")

    # Get instance_prompt a.k.a trigger word
    card = ModelCard.load(custom_model)
    repo_data = card.data.to_dict()
    instance_prompt = repo_data.get("instance_prompt")

    if instance_prompt is not None:
        print(f"Trigger word: {instance_prompt}")
    else:
        instance_prompt = "no trigger word needed"
        print(f"Trigger word: no trigger word needed")

    # List all ".safetensors" files in repo
    sfts_available_files = fs.glob(f"{custom_model}/*safetensors")
    sfts_available_files = get_files(sfts_available_files)

    if sfts_available_files == []:
        sfts_available_files = ["NO SAFETENSORS FILE"]

    print(f"Safetensors available: {sfts_available_files}")

    return custom_model, "Model Ready", gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)

def custom_model_changed(custom_model, previous_model):
    if custom_model == "" and previous_model == "" :
        status_message = ""      
    elif custom_model != previous_model:
        status_message = "model changed, please reload before any new run"
    else:
        status_message = "model ready"
    return status_message

@spaces.GPU
def infer (custom_model, weight_name, prompt, inf_steps, guidance_scale, width, height, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):
    
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        vae=vae, torch_dtype=torch.float16, variant="fp16",
        use_safetensors=True
    )

    pipe.to(device)
    
    if weight_name == "NO SAFETENSORS FILE": 
        pipe.load_lora_weights(
            custom_model,     
            low_cpu_mem_usage = True,
            use_auth_token = True
        )

    else:
        pipe.load_lora_weights(
            custom_model,
            weight_name = weight_name,        
            low_cpu_mem_usage = True,
            use_auth_token = True
        )

    pipe.fuse_lora()

    if seed < 0 :
        seed = random.randint(0, 423538377342)
    
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        num_inference_steps=inf_steps,
        width=width,
        height=height,
        guidance_scale = guidance_scale,
        generator=generator,
        cross_attention_kwargs={"scale": lora_weight}
    ).images[0]

    pipe.unfuse_lora()
    
    return image, seed

css="""
#col-container{
    margin: 0 auto;
    max-width: 720px;
    text-align: left;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
button#load_model_btn{
    height: 46px;
}
#status_info{
    font-size: 0.9em;
}
.custom-color {
    color: #030303 !important;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Note: you might want to use a private custom LoRa model</h2>
                    <p class="main-message custom-color">
                        To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br />
                    </p>
                    <p class="actions custom-color">
                        <a href="https://huggingface.co./spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co./datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                        to start using private models and skip the queue
                    </p>
                </div>
            ''', elem_id="warning-duplicate")
        gr.HTML("""
<h2 style="text-align: center;">SD-XL Custom Model Inference</h2>
<p style="text-align: center;">Use this demo to check results from your previously trained LoRa model.</p>
        """)
        with gr.Group():
            with gr.Row():
                with gr.Column():
                    if not is_shared_ui:
                        your_username = api.whoami()["name"]
                        my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
                        model_names = [item.modelId for item in my_models]
    
                    if not is_shared_ui:
                        custom_model = gr.Dropdown(
                            label = "Your custom model ID",
                            info="You can pick one of your private models",
                            choices = model_names,
                            allow_custom_value = True
                            #placeholder = "username/model_id"
                        )
                    else:
                        custom_model = gr.Textbox(
                            label="Your custom model ID", 
                            placeholder="your_username/your_trained_model_name", 
                            info="Make sure your model is set to PUBLIC"
                        )
                    
                    weight_name = gr.Dropdown(
                        label="Safetensors file", 
                        #value="pytorch_lora_weights.safetensors", 
                        info="specify which one if model has several .safetensors files",
                        allow_custom_value=True,
                        visible = False
                    )
                with gr.Column():
                    with gr.Group():
                        load_model_btn = gr.Button("Load my model", elem_id="load_model_btn")
                        previous_model = gr.Textbox(
                            visible = False
                        )
                        model_status = gr.Textbox(
                            label = "model status",
                            show_label = False,
                            elem_id = "status_info"
                        )
                    trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
        
        prompt_in = gr.Textbox(
            label="Your Prompt",
            info = "Dont' forget to include your trigger word if necessary"
        )   

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                inf_steps = gr.Slider(
                    label="Inference steps",
                    minimum=12,
                    maximum=50,
                    step=1,
                    value=25
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=50.0,
                    step=0.1,
                    value=7.5
                )

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=1024,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=1024,
                    step=32,
                    value=1024,
                )
    
            with gr.Row():
                seed = gr.Slider(
                    label="Seed",
                    info = "-1 denotes a random seed",
                    minimum=-1,
                    maximum=423538377342,
                    step=1,
                    value=-1
                )
                last_used_seed = gr.Number(
                    label = "Last used seed",
                    info = "the seed used in the last generation",
                )
            lora_weight = gr.Slider(
                label="LoRa weigth",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=1.0
            )
        submit_btn = gr.Button("Submit")
        image_out = gr.Image(label="Image output")

    custom_model.blur(
        fn=custom_model_changed,
        inputs = [custom_model, previous_model],
        outputs = [model_status],
        queue = False
    )
    load_model_btn.click(
        fn = load_model,
        inputs=[custom_model],
        outputs = [previous_model, model_status, weight_name, trigger_word],
        queue = False
    )
    submit_btn.click(
        fn = infer,
        inputs = [custom_model, weight_name, prompt_in, inf_steps, guidance_scale, width, height, seed, lora_weight],
        outputs = [image_out, last_used_seed]
    )

demo.queue().launch()