import time import base64 import gradio as gr from sentence_transformers import SentenceTransformer import httpx import json import os import requests import urllib from os import path from pydub import AudioSegment img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator") from share_btn import community_icon_html, loading_icon_html, share_js def get_prompts(uploaded_image): prompt = img_to_text(uploaded_image, "ViT-L (best for Stable Diffusion 1.*)", "fast", fn_index=1)[0] music_result = generate_track_by_prompt(prompt, duration, gen_intensity, audio_format) return music_result[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) from utils import get_tags_for_prompts, get_mubert_tags_embeddings, get_pat minilm = SentenceTransformer('all-MiniLM-L6-v2') mubert_tags_embeddings = get_mubert_tags_embeddings(minilm) def get_track_by_tags(tags, pat, duration, gen_intensity, maxit=20, loop=False): if loop: mode = "loop" else: mode = "track" r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM', json={ "method": "RecordTrackTTM", "params": { "pat": pat, "duration": duration, "format": "wav", "intensity":gen_intensity, "tags": tags, "mode": mode } }) rdata = json.loads(r.text) assert rdata['status'] == 1, rdata['error']['text'] trackurl = rdata['data']['tasks'][0]['download_link'] print('Generating track ', end='') for i in range(maxit): r = httpx.get(trackurl) if r.status_code == 200: return trackurl time.sleep(1) def generate_track_by_prompt(prompt, duration, gen_intensity): try: pat = get_pat("prodia@prodia.com") _, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, [prompt, ])[0] result = get_track_by_tags(tags, pat, int(duration), gen_intensity, loop=False) print(result) return result, ",".join(tags), "Success" except Exception as e: return None, "", str(e) def convert_mp3_to_wav(mp3_filepath): url = mp3_filepath save_as = "file.mp3" data = urllib.request.urlopen(url) f = open(save_as,'wb') f.write(data.read()) f.close() wave_file="file.wav" sound = AudioSegment.from_mp3(save_as) sound.export(wave_file, format="wav") return wave_file css = """ #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML("""
Sends an image in to CLIP Interrogator to generate a text prompt which is then run through Mubert text-to-music to generate music from the input image!