Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,27 @@ import spaces
|
|
3 |
import json
|
4 |
import re
|
5 |
from gradio_client import Client
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
|
|
|
|
|
|
|
|
|
11 |
kosmos2_result = kosmos2_client.predict(
|
12 |
image_in, # str (filepath or URL to image) in 'Test Image' Image component
|
13 |
"Detailed", # str in 'Description Type' Radio component
|
@@ -77,6 +93,22 @@ def get_magnet(prompt):
|
|
77 |
)
|
78 |
print(result)
|
79 |
return result[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
import re
|
82 |
import torch
|
@@ -112,15 +144,19 @@ def get_musical_prompt(user_prompt):
|
|
112 |
print(f"SUGGESTED Musical prompt: {cleaned_text}")
|
113 |
return cleaned_text.lstrip("\n")
|
114 |
|
115 |
-
def infer(image_in):
|
116 |
gr.Info("Getting image caption with Kosmos2...")
|
117 |
user_prompt = get_caption(image_in)
|
118 |
|
119 |
gr.Info("Building a musical prompt according to the image caption ...")
|
120 |
musical_prompt = get_musical_prompt(user_prompt)
|
121 |
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
|
125 |
return musical_prompt, music_o
|
126 |
|
@@ -149,10 +185,18 @@ with gr.Blocks(css=css) as demo:
|
|
149 |
type = "filepath",
|
150 |
elem_id = "image-in"
|
151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
submit_btn = gr.Button("Make music from my pic !")
|
153 |
with gr.Column():
|
154 |
caption = gr.Textbox(
|
155 |
-
label = "
|
156 |
max_lines = 3
|
157 |
)
|
158 |
result = gr.Audio(
|
@@ -161,16 +205,16 @@ with gr.Blocks(css=css) as demo:
|
|
161 |
with gr.Column():
|
162 |
gr.Examples(
|
163 |
examples = [
|
164 |
-
["examples/monalisa.png"],
|
165 |
-
["examples/santa.png"],
|
166 |
-
["examples/ocean_poet.jpeg"],
|
167 |
-
["examples/winter_hiking.png"],
|
168 |
-
["examples/teatime.jpeg"],
|
169 |
-
["examples/news_experts.jpeg"],
|
170 |
-
["examples/chicken_adobo.jpeg"]
|
171 |
],
|
172 |
fn = infer,
|
173 |
-
inputs = [image_in],
|
174 |
outputs = [caption, result],
|
175 |
cache_examples = False
|
176 |
)
|
@@ -178,7 +222,8 @@ with gr.Blocks(css=css) as demo:
|
|
178 |
submit_btn.click(
|
179 |
fn = infer,
|
180 |
inputs = [
|
181 |
-
image_in
|
|
|
182 |
],
|
183 |
outputs =[
|
184 |
caption,
|
@@ -186,4 +231,4 @@ with gr.Blocks(css=css) as demo:
|
|
186 |
]
|
187 |
)
|
188 |
|
189 |
-
demo.queue().launch(show_api=False)
|
|
|
3 |
import json
|
4 |
import re
|
5 |
from gradio_client import Client
|
6 |
+
from moviepy.editor import VideoFileClip
|
7 |
+
from moviepy.audio.AudioClip import AudioClip
|
8 |
|
9 |
+
def extract_audio(video_in):
|
10 |
+
input_video = video_in
|
11 |
+
output_audio = 'audio.wav'
|
12 |
+
|
13 |
+
# Open the video file and extract the audio
|
14 |
+
video_clip = VideoFileClip(input_video)
|
15 |
+
audio_clip = video_clip.audio
|
16 |
+
|
17 |
+
# Save the audio as a .wav file
|
18 |
+
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
|
19 |
+
print("Audio extraction complete.")
|
20 |
|
21 |
+
return 'audio.wav'
|
22 |
|
23 |
+
|
24 |
+
|
25 |
+
def get_caption(image_in):
|
26 |
+
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
|
27 |
kosmos2_result = kosmos2_client.predict(
|
28 |
image_in, # str (filepath or URL to image) in 'Test Image' Image component
|
29 |
"Detailed", # str in 'Description Type' Radio component
|
|
|
93 |
)
|
94 |
print(result)
|
95 |
return result[1]
|
96 |
+
|
97 |
+
def get_audioldm(prompt):
|
98 |
+
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
|
99 |
+
result = client.predict(
|
100 |
+
prompt, # str in 'Input text' Textbox component
|
101 |
+
"Low quality.", # str in 'Negative prompt' Textbox component
|
102 |
+
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
|
103 |
+
3.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
|
104 |
+
45, # int | float in 'Seed' Number component
|
105 |
+
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
|
106 |
+
fn_index=1
|
107 |
+
)
|
108 |
+
print(result)
|
109 |
+
audio_result = extract_audio(result)
|
110 |
+
return audio_result
|
111 |
+
|
112 |
|
113 |
import re
|
114 |
import torch
|
|
|
144 |
print(f"SUGGESTED Musical prompt: {cleaned_text}")
|
145 |
return cleaned_text.lstrip("\n")
|
146 |
|
147 |
+
def infer(image_in, chosen_model):
|
148 |
gr.Info("Getting image caption with Kosmos2...")
|
149 |
user_prompt = get_caption(image_in)
|
150 |
|
151 |
gr.Info("Building a musical prompt according to the image caption ...")
|
152 |
musical_prompt = get_musical_prompt(user_prompt)
|
153 |
|
154 |
+
if chosen_model == "MAGNet" :
|
155 |
+
gr.Info("Now calling MAGNet for music...")
|
156 |
+
music_o = get_magnet(musical_prompt)
|
157 |
+
elif chosen_model == "AudioLDM-2" :
|
158 |
+
gr.Info("Now calling AudioLDM-2 for music...")
|
159 |
+
music_o = get_magnet(musical_prompt)
|
160 |
|
161 |
return musical_prompt, music_o
|
162 |
|
|
|
185 |
type = "filepath",
|
186 |
elem_id = "image-in"
|
187 |
)
|
188 |
+
chosen_model = gr.Radio(
|
189 |
+
label = "Choose a model",
|
190 |
+
choices = [
|
191 |
+
"MAGNet",
|
192 |
+
"AudioLDM-2"
|
193 |
+
],
|
194 |
+
value = "MAGNet"
|
195 |
+
)
|
196 |
submit_btn = gr.Button("Make music from my pic !")
|
197 |
with gr.Column():
|
198 |
caption = gr.Textbox(
|
199 |
+
label = "Inspirational musical prompt",
|
200 |
max_lines = 3
|
201 |
)
|
202 |
result = gr.Audio(
|
|
|
205 |
with gr.Column():
|
206 |
gr.Examples(
|
207 |
examples = [
|
208 |
+
["examples/monalisa.png", "MAGNet"],
|
209 |
+
["examples/santa.png", "MAGNet"],
|
210 |
+
["examples/ocean_poet.jpeg", "MAGNet"],
|
211 |
+
["examples/winter_hiking.png", "MAGNet"],
|
212 |
+
["examples/teatime.jpeg", "MAGNet"],
|
213 |
+
["examples/news_experts.jpeg", "MAGNet"],
|
214 |
+
["examples/chicken_adobo.jpeg", "MAGNet"]
|
215 |
],
|
216 |
fn = infer,
|
217 |
+
inputs = [image_in, chosen_model],
|
218 |
outputs = [caption, result],
|
219 |
cache_examples = False
|
220 |
)
|
|
|
222 |
submit_btn.click(
|
223 |
fn = infer,
|
224 |
inputs = [
|
225 |
+
image_in,
|
226 |
+
chosen_model
|
227 |
],
|
228 |
outputs =[
|
229 |
caption,
|
|
|
231 |
]
|
232 |
)
|
233 |
|
234 |
+
demo.queue(max_size=16).launch(show_api=False)
|