Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,502 Bytes
16c783e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import gradio as gr
from urllib.parse import urlparse
import requests
import time
from PIL import Image
import base64
import io
import uuid
import os
def extract_property_info(prop):
combined_prop = {}
merge_keywords = ["allOf", "anyOf", "oneOf"]
for keyword in merge_keywords:
if keyword in prop:
for subprop in prop[keyword]:
combined_prop.update(subprop)
del prop[keyword]
if not combined_prop:
combined_prop = prop.copy()
for key in ["description", "default"]:
if key in prop:
combined_prop[key] = prop[key]
return combined_prop
def detect_file_type(filename):
audio_extensions = [".mp3", ".wav", ".flac", ".aac", ".ogg", ".m4a"]
image_extensions = [
".jpg",
".jpeg",
".png",
".gif",
".bmp",
".tiff",
".svg",
".webp",
]
video_extensions = [
".mp4",
".mov",
".wmv",
".flv",
".avi",
".avchd",
".mkv",
".webm",
]
# Extract the file extension
if isinstance(filename, str):
extension = filename[filename.rfind(".") :].lower()
# Check the extension against each list
if extension in audio_extensions:
return "audio"
elif extension in image_extensions:
return "image"
elif extension in video_extensions:
return "video"
else:
return "string"
elif isinstance(filename, list):
return "list"
def build_gradio_inputs(ordered_input_schema, example_inputs=None):
inputs = []
input_field_strings = """inputs = []\n"""
names = []
for index, (name, prop) in enumerate(ordered_input_schema):
names.append(name)
prop = extract_property_info(prop)
if "enum" in prop:
input_field = gr.Dropdown(
choices=prop["enum"],
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Dropdown(
choices={prop["enum"]}, label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value="{prop.get("default")}"
))\n"""
elif prop["type"] == "integer":
if prop.get("minimum") and prop.get("maximum"):
input_field = gr.Slider(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
minimum=prop.get("minimum"),
maximum=prop.get("maximum"),
step=1,
)
input_field_string = f"""inputs.append(gr.Slider(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")},
minimum={prop.get("minimum")}, maximum={prop.get("maximum")}, step=1,
))\n"""
else:
input_field = gr.Number(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Number(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
elif prop["type"] == "number":
if prop.get("minimum") and prop.get("maximum"):
input_field = gr.Slider(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
minimum=prop.get("minimum"),
maximum=prop.get("maximum"),
)
input_field_string = f"""inputs.append(gr.Slider(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")},
minimum={prop.get("minimum")}, maximum={prop.get("maximum")}
))\n"""
else:
input_field = gr.Number(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Number(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
elif prop["type"] == "boolean":
input_field = gr.Checkbox(
label=prop.get("title"),
info=prop.get("description"),
value=prop.get("default"),
)
input_field_string = f"""inputs.append(gr.Checkbox(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}, value={prop.get("default")}
))\n"""
elif (
prop["type"] == "string" and prop.get("format") == "uri" and example_inputs
):
input_type_example = example_inputs.get(name, None)
if input_type_example:
input_type = detect_file_type(input_type_example)
else:
input_type = None
if input_type == "image":
input_field = gr.Image(label=prop.get("title"), type="filepath")
input_field_string = f"""inputs.append(gr.Image(
label="{prop.get("title")}", type="filepath"
))\n"""
elif input_type == "audio":
input_field = gr.Audio(label=prop.get("title"), type="filepath")
input_field_string = f"""inputs.append(gr.Audio(
label="{prop.get("title")}", type="filepath"
))\n"""
elif input_type == "video":
input_field = gr.Video(label=prop.get("title"))
input_field_string = f"""inputs.append(gr.Video(
label="{prop.get("title")}"
))\n"""
else:
input_field = gr.File(label=prop.get("title"))
input_field_string = f"""inputs.append(gr.File(
label="{prop.get("title")}"
))\n"""
else:
input_field = gr.Textbox(
label=prop.get("title"),
info=prop.get("description"),
)
input_field_string = f"""inputs.append(gr.Textbox(
label="{prop.get("title")}", info={"'''"+prop.get("description")+"'''" if prop.get("description") else 'None'}
))\n"""
inputs.append(input_field)
input_field_strings += f"{input_field_string}\n"
input_field_strings += f"names = {names}\n"
return inputs, input_field_strings, names
def build_gradio_outputs_replicate(output_types):
outputs = []
output_field_strings = """outputs = []\n"""
if output_types:
for output in output_types:
if output == "image":
output_field = gr.Image()
output_field_string = "outputs.append(gr.Image())"
elif output == "audio":
output_field = gr.Audio(type="filepath")
output_field_string = "outputs.append(gr.Audio(type='filepath'))"
elif output == "video":
output_field = gr.Video()
output_field_string = "outputs.append(gr.Video())"
elif output == "string":
output_field = gr.Textbox()
output_field_string = "outputs.append(gr.Textbox())"
elif output == "json":
output_field = gr.JSON()
output_field_string = "outputs.append(gr.JSON())"
elif output == "list":
output_field = gr.JSON()
output_field_string = "outputs.append(gr.JSON())"
outputs.append(output_field)
output_field_strings += f"{output_field_string}\n"
else:
output_field = gr.JSON()
output_field_string = "outputs.append(gr.JSON())"
outputs.append(output_field)
return outputs, output_field_strings
def build_gradio_outputs_cog():
pass
def process_outputs(outputs):
output_values = []
for output in outputs:
if not output:
continue
if isinstance(output, str):
if output.startswith("data:image"):
base64_data = output.split(",", 1)[1]
image_data = base64.b64decode(base64_data)
image_stream = io.BytesIO(image_data)
image = Image.open(image_stream)
output_values.append(image)
elif output.startswith("data:audio"):
base64_data = output.split(",", 1)[1]
audio_data = base64.b64decode(base64_data)
audio_stream = io.BytesIO(audio_data)
filename = f"{uuid.uuid4()}.wav" # Change format as needed
with open(filename, "wb") as audio_file:
audio_file.write(audio_stream.getbuffer())
output_values.append(filename)
elif output.startswith("data:video"):
base64_data = output.split(",", 1)[1]
video_data = base64.b64decode(base64_data)
video_stream = io.BytesIO(video_data)
# Here you can save the audio or return the stream for further processing
filename = f"{uuid.uuid4()}.mp4" # Change format as needed
with open(filename, "wb") as video_file:
video_file.write(video_stream.getbuffer())
output_values.append(filename)
else:
output_values.append(output)
else:
output_values.append(output)
return output_values
def parse_outputs(data):
if isinstance(data, dict):
# Handle case where data is an object
dict_values = []
for value in data.values():
extracted_values = parse_outputs(value)
# For dict, we append instead of extend to maintain list structure within objects
if isinstance(value, list):
dict_values += [extracted_values]
else:
dict_values += extracted_values
return dict_values
elif isinstance(data, list):
# Handle case where data is an array
list_values = []
for item in data:
# Here we extend to flatten the list since we're already in an array context
list_values += parse_outputs(item)
return list_values
else:
# Handle primitive data types directly
return [data]
def create_dynamic_gradio_app(
inputs,
outputs,
api_url,
api_id=None,
replicate_token=None,
title="",
model_description="",
names=[],
local_base=False,
hostname="0.0.0.0",
):
expected_outputs = len(outputs)
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
payload = {"input": {}}
if api_id:
payload["version"] = api_id
parsed_url = urlparse(str(request.url))
if local_base:
base_url = f"http://{hostname}:7860"
else:
base_url = parsed_url.scheme + "://" + parsed_url.netloc
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{base_url}/file=" + value
if value is not None and value != "":
payload["input"][key] = value
print(payload)
headers = {"Content-Type": "application/json"}
if replicate_token:
headers["Authorization"] = f"Token {replicate_token}"
print(headers)
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
# TODO: Add a failing mechanism if the API gets stuck
if response.status_code == 200:
json_response = response.json()
# If the output component is JSON return the entire output response
if outputs[0].get_config()["name"] == "json":
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
difference_outputs = expected_outputs - len(processed_outputs)
# If less outputs than expected, hide the extra ones
if difference_outputs > 0:
extra_outputs = [gr.update(visible=False)] * difference_outputs
processed_outputs.extend(extra_outputs)
# If more outputs than expected, cap the outputs to the expected number if
elif difference_outputs < 0:
processed_outputs = processed_outputs[:difference_outputs]
return (
tuple(processed_outputs)
if len(processed_outputs) > 1
else processed_outputs[0]
)
else:
if response.status_code == 409:
raise gr.Error(
f"Sorry, the Cog image is still processing. Try again in a bit."
)
raise gr.Error(f"The submission failed! Error: {response.status_code}")
app = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title=title,
description=model_description,
allow_flagging="never",
)
return app
def create_gradio_app_script(
inputs_string,
outputs_string,
api_url,
api_id=None,
replicate_token=None,
title="",
model_description="",
local_base=False,
hostname="0.0.0.0"
):
headers = {"Content-Type": "application/json"}
if replicate_token:
headers["Authorization"] = f"Token {replicate_token}"
if local_base:
base_url = f'base_url = "http://{hostname}:7860"'
else:
base_url = """parsed_url = urlparse(str(request.url))
base_url = parsed_url.scheme + "://" + parsed_url.netloc"""
headers_string = f"""headers = {headers}\n"""
api_id_value = f'payload["version"] = "{api_id}"' if api_id is not None else ""
definition_string = """expected_outputs = len(outputs)
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):"""
payload_string = f"""payload = {{"input": {{}}}}
{api_id_value}
{base_url}
for i, key in enumerate(names):
value = args[i]
if value and (os.path.exists(str(value))):
value = f"{{base_url}}/file=" + value
if value is not None and value != "":
payload["input"][key] = value\n"""
request_string = (
f"""response = requests.post("{api_url}", headers=headers, json=payload)\n"""
)
result_string = f"""
if response.status_code == 201:
follow_up_url = response.json()["urls"]["get"]
response = requests.get(follow_up_url, headers=headers)
while response.json()["status"] != "succeeded":
if response.json()["status"] == "failed":
raise gr.Error("The submission failed!")
response = requests.get(follow_up_url, headers=headers)
time.sleep(1)
if response.status_code == 200:
json_response = response.json()
#If the output component is JSON return the entire output response
if(outputs[0].get_config()["name"] == "json"):
return json_response["output"]
predict_outputs = parse_outputs(json_response["output"])
processed_outputs = process_outputs(predict_outputs)
difference_outputs = expected_outputs - len(processed_outputs)
# If less outputs than expected, hide the extra ones
if difference_outputs > 0:
extra_outputs = [gr.update(visible=False)] * difference_outputs
processed_outputs.extend(extra_outputs)
# If more outputs than expected, cap the outputs to the expected number
elif difference_outputs < 0:
processed_outputs = processed_outputs[:difference_outputs]
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
else:
if(response.status_code == 409):
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
raise gr.Error(f"The submission failed! Error: {{response.status_code}}")\n"""
interface_string = f"""title = "{title}"
model_description = "{model_description}"
app = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title=title,
description=model_description,
allow_flagging="never",
)
app.launch(share=True)
"""
app_string = f"""import gradio as gr
from urllib.parse import urlparse
import requests
import time
import os
from utils.gradio_helpers import parse_outputs, process_outputs
{inputs_string}
{outputs_string}
{definition_string}
{headers_string}
{payload_string}
{request_string}
{result_string}
{interface_string}
"""
return app_string
|