import gradio as gr | |
#import torch | |
#from torch import autocast // only for GPU | |
from PIL import Image | |
import os | |
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') | |
from diffusers import StableDiffusionPipeline | |
#from diffusers import StableDiffusionImg2ImgPipeline | |
print("hello sylvain") | |
YOUR_TOKEN=MY_SECRET_TOKEN | |
device="cpu" | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) | |
pipe.to(device) | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") | |
def infer(prompt): | |
#image = pipe(prompt, init_image=init_image)["sample"][0] | |
images_list = pipe([prompt] * 4) | |
images = [] | |
safe_image = Image.open(r"unsafe.png") | |
for i, image in enumerate(images_list["sample"]): | |
if(images_list["nsfw_content_detected"][i]): | |
images.append(safe_image) | |
else: | |
images.append(image) | |
return images | |
print("Great sylvain ! Everything is working fine !") | |
title="Stable Diffusion CPU" | |
description="Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>" | |
gr.Interface(fn=infer, inputs="text", outputs=gallery,title=title,description=description).queue(max_size=10).launch(enable_queue=True) | |