import argparse import os def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Train Consistency Encoder.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) # parser.add_argument( # "--instance_data_dir", # type=str, # required=True, # help=("A folder containing the training data. "), # ) parser.add_argument( "--data_config_path", type=str, required=True, help=("A folder containing the training data. "), ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing the target image. By " "default, the standard Image Dataset maps out 'file_name' " "to 'image'.", ) parser.add_argument( "--caption_column", type=str, default=None, help="The column of the dataset containing the instance prompt for each image", ) parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") parser.add_argument( "--instance_prompt", type=str, default=None, required=True, help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_train_vis_images", type=int, default=2, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--num_validation_images", type=int, default=2, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_vis_steps", type=int, default=500, help=( "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--train_vis_steps", type=int, default=500, help=( "Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--vis_lcm", type=bool, default=True, help=( "Also log results of LCM inference", ), ) parser.add_argument( "--output_dir", type=str, default="lora-dreambooth-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet") parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features") parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter") parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.") parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism") parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)") parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers") parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided") parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?") # related to CFG: parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training") parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training") parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training") parser.add_argument( "--resolution", type=int, default=1024, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--crops_coords_top_left_h", type=int, default=0, help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), ) parser.add_argument( "--crops_coords_top_left_w", type=int, default=0, help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=5, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") parser.add_argument( "--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer and Prodigy optimizers.", ) parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="wandb", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--pretrained_lcm_lora_path", type=str, default="latent-consistency/lcm-lora-sdxl", help=("Path for lcm lora pretrained"), ) parser.add_argument( "--losses_config_path", type=str, required=True, help=("A yaml file containing losses to use and their weights."), ) parser.add_argument( "--lcm_every_k_steps", type=int, default=-1, help="How often to run lcm. If -1, lcm is not run." ) parser.add_argument( "--lcm_batch_size", type=int, default=1, help="Batch size for lcm." ) parser.add_argument( "--lcm_max_timestep", type=int, default=1000, help="Max timestep to use with LCM." ) parser.add_argument( "--lcm_sample_scale_every_k_steps", type=int, default=-1, help="How often to change lcm scale. If -1, scale is fixed at 1." ) parser.add_argument( "--lcm_min_scale", type=float, default=0.1, help="When sampling lcm scale, the minimum scale to use." ) parser.add_argument( "--scale_lcm_by_max_step", action="store_true", help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration" ) parser.add_argument( "--lcm_sample_full_lcm_prob", type=float, default=0.2, help="When sampling lcm scale, the probability of using full lcm (scale of 1)." ) parser.add_argument( "--run_on_cpu", action="store_true", help="whether to run on cpu or not" ) parser.add_argument( "--experiment_name", type=str, help=("A short description of the experiment to add to the wand run log. "), ) parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora") parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora") if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank args.optimizer = "AdamW" return args